Hoffmann Björn, Vassant Simon, Chen Xue-Wen, Götzinger Stephan, Sandoghdar Vahid, Christiansen Silke
Max Planck Institute for the Science of Light, Erlangen, Germany.
Nanotechnology. 2015 Oct 9;26(40):404001. doi: 10.1088/0957-4484/26/40/404001. Epub 2015 Sep 17.
Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.
等离子体天线是一种极具吸引力的纳米结构,适用于从纳米尺度光与物质相互作用的基础研究到超灵敏传感、增强太阳能电池吸收或太阳能燃料生成等与工业相关的应用等众多研究领域。这些天线一个特别有趣的特性是它们能够增强发射体的荧光特性。理论计算表明,纳米锥天线能产生理想的结果,但要达到最佳性能需要高度的制造精度和控制。在本研究中,我们报告了通过聚焦离子束铣削溅射的纳米晶金层,制备出底部直径和高度在100 nm范围内、纵横比可变的纳米锥。这种可控的制造工艺使我们能够获得具有定制等离子体共振的锥体。测得的等离子体光谱与有限时域差分计算结果非常吻合。理论研究预测,这些纳米锥可以将量子发射体的自发发射率提高数百倍,同时保持其量子效率高于60%。