Suppr超能文献

硫化镉量子点敏化太阳能电池中的氧化锌分级纳米结构光阳极

ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell.

作者信息

Liu Huan, Zhang Gengmin, Sun Wentao, Shen Ziyong, Shi Mingji

机构信息

Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, China.

Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, China; SIP-UCLA Institute for Technology Advancement, Suzhou, Jiangsu Province, China.

出版信息

PLoS One. 2015 Sep 17;10(9):e0138298. doi: 10.1371/journal.pone.0138298. eCollection 2015.

Abstract

A hierarchical array of ZnO nanocones covered with ZnO nanospikes was hydrothermally fabricated and employed as the photoanode in a CdS quantum dot-sensitized solar cell (QDSSC). This QDSSC outperformed the QDSSC based on a simple ZnO nanocone photoanode in all the four principal photovoltaic parameters. Using the hierarchical photoanode dramatically increased the short circuit current density and also slightly raised the open circuit voltage and the fill factor. As a result, the conversion efficiency of the QDSSC based on the hierarchical photoanode was more than twice that of the QDSSC based on the simple ZnO nanocone photoanode. This improvement is attributable to both the enlarged specific area of the photoanode and the reduction in the recombination of the photoexcited electrons.

摘要

通过水热法制备了一种覆盖有氧化锌纳米尖的分层排列的氧化锌纳米锥阵列,并将其用作硫化镉量子点敏化太阳能电池(QDSSC)中的光阳极。在所有四个主要光伏参数方面,这种QDSSC的性能优于基于简单氧化锌纳米锥光阳极的QDSSC。使用分层光阳极显著提高了短路电流密度,同时也略微提高了开路电压和填充因子。因此,基于分层光阳极的QDSSC的转换效率是基于简单氧化锌纳米锥光阳极的QDSSC的两倍多。这种改进归因于光阳极比表面积的增大以及光激发电子复合的减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e9/4574909/328f5b0651e9/pone.0138298.g001.jpg

相似文献

1
ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell.
PLoS One. 2015 Sep 17;10(9):e0138298. doi: 10.1371/journal.pone.0138298. eCollection 2015.
2
ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.
Phys Chem Chem Phys. 2013 Jun 14;15(22):8710-5. doi: 10.1039/c3cp50365h. Epub 2013 May 2.
3
Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
Opt Express. 2010 Jan 18;18(2):1296-301. doi: 10.1364/OE.18.001296.
4
ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
Nanoscale. 2013 Feb 7;5(3):936-43. doi: 10.1039/c2nr32663a. Epub 2012 Nov 20.
5
Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application.
Nanoscale. 2012 Sep 21;4(18):5602-7. doi: 10.1039/c2nr31018j. Epub 2012 Jun 29.
6
CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.
ACS Appl Mater Interfaces. 2011 Aug;3(8):3146-51. doi: 10.1021/am200648b. Epub 2011 Jul 19.
7
Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
Nanoscale. 2010 Jul;2(7):1229-32. doi: 10.1039/c0nr00087f. Epub 2010 May 20.
9
Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.
ACS Nano. 2011 Dec 27;5(12):9494-500. doi: 10.1021/nn203375g. Epub 2011 Nov 2.
10
Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
Nano Lett. 2007 Jun;7(6):1793-8. doi: 10.1021/nl070430o. Epub 2007 May 16.

引用本文的文献

1
Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles.
Beilstein J Nanotechnol. 2017 Jan 23;8:210-221. doi: 10.3762/bjnano.8.23. eCollection 2017.

本文引用的文献

1
Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing.
ACS Appl Mater Interfaces. 2015 Jul 8;7(26):14303-16. doi: 10.1021/acsami.5b02816. Epub 2015 Jun 26.
5
Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells.
ACS Appl Mater Interfaces. 2014 Mar 26;6(6):4466-72. doi: 10.1021/am500209f. Epub 2014 Mar 10.
6
Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells.
J Colloid Interface Sci. 2014 Mar 15;418:277-82. doi: 10.1016/j.jcis.2013.11.017. Epub 2013 Nov 21.
7
Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors.
Adv Mater. 2014 Mar 12;26(10):1541-50. doi: 10.1002/adma.201304363. Epub 2013 Nov 18.
8
Hierarchical macroporous Zn(2)SnO(4)-ZnO nanorod composite photoelectrodes for efficient CdS/CdSe quantum dot co-sensitized solar cells.
ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11865-71. doi: 10.1021/am4035653. Epub 2013 Nov 14.
9
Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
J Am Chem Soc. 2013 Oct 23;135(42):15913-22. doi: 10.1021/ja4079804. Epub 2013 Oct 10.
10
Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters.
Adv Mater. 2013 Oct 25;25(40):5750-5. doi: 10.1002/adma.201302293. Epub 2013 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验