Suppr超能文献

非编码基因组中的突变。

Mutations in the noncoding genome.

作者信息

Scacheri Cheryl A, Scacheri Peter C

机构信息

aCourtagen Life Sciences, 12 Gill St, Ste. 3700, Woburn, MA 01801 bDepartment of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine; Cleveland, Ohio, USA.

出版信息

Curr Opin Pediatr. 2015 Dec;27(6):659-64. doi: 10.1097/MOP.0000000000000283.

Abstract

PURPOSE OF REVIEW

Clinical diagnostic sequencing currently focuses on identifying causal mutations in the exome, wherein most disease-causing mutations are known to occur. The rest of the genome is mostly comprised of regulatory elements that control gene expression, but these have remained largely unexplored in clinical diagnostics due to the high cost of whole genome sequencing and interpretive challenges. The purpose of this review is to illustrate examples of diseases caused by mutations in regulatory elements and introduce the diagnostic potential for whole genome sequencing. Different classes of functional elements and chromatin structure are described to provide the clinician with a foundation for understanding the basis of these mutations.

RECENT FINDINGS

The utilization of whole-genome sequence data, epigenomic maps and induced pluripotent stem (IPS) cell technologies facilitated the discovery that mutations in the pancreas-specific transcription factor 1a enhancer can cause isolated pancreatic agenesis. High resolution array comparative genomic hybridisation (CGH), whole-genome sequencing, maps of 3-D chromatin architecture, and mouse models generated using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas were used to show that disruption of topological-associated domain boundary elements cause limb defects. Structural variants that reposition enhancers in somatic cells have also been described in cancer.

SUMMARY

Although not ready for diagnostics, new technologies, epigenomic maps, and improved knowledge of chromatin architecture will soon enable a better understanding and diagnostic solutions for currently unexplained genetic disorders.

摘要

综述目的

目前临床诊断性测序主要聚焦于识别外显子组中的致病突变,已知大多数致病突变都发生在此处。基因组的其余部分主要由控制基因表达的调控元件组成,但由于全基因组测序成本高昂且解读存在挑战,这些调控元件在临床诊断中在很大程度上仍未得到探索。本综述的目的是举例说明由调控元件突变引起的疾病,并介绍全基因组测序的诊断潜力。文中描述了不同类型的功能元件和染色质结构,以便为临床医生理解这些突变的基础提供依据。

最新发现

全基因组序列数据、表观基因组图谱和诱导多能干细胞(IPS)技术的应用促成了一项发现,即胰腺特异性转录因子1a增强子中的突变可导致孤立性胰腺发育不全。高分辨率阵列比较基因组杂交(CGH)、全基因组测序、三维染色质结构图谱以及使用成簇规律间隔短回文重复序列(CRISPR)/Cas构建的小鼠模型,都被用于证明拓扑相关结构域边界元件的破坏会导致肢体缺陷。在癌症中也发现了可在体细胞中重新定位增强子的结构变异。

总结

尽管尚未准备好用于诊断,但新技术、表观基因组图谱以及对染色质结构的深入了解,将很快有助于更好地理解目前无法解释的遗传疾病并提供诊断解决方案。

相似文献

1
Mutations in the noncoding genome.
Curr Opin Pediatr. 2015 Dec;27(6):659-64. doi: 10.1097/MOP.0000000000000283.
2
Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes.
Nat Genet. 2019 Aug;51(8):1252-1262. doi: 10.1038/s41588-019-0472-1. Epub 2019 Jul 31.
3
Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements.
Nat Genet. 2017 Nov;49(11):1602-1612. doi: 10.1038/ng.3963. Epub 2017 Sep 25.
4
[High-throughput approaches to study cis-regulating elements].
Biol Aujourdhui. 2017;211(4):271-280. doi: 10.1051/jbio/2018015. Epub 2018 Jun 29.
5
OncoBase: a platform for decoding regulatory somatic mutations in human cancers.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1044-D1055. doi: 10.1093/nar/gky1139.
8
Chromatin interaction maps reveal genetic regulation for quantitative traits in maize.
Nat Commun. 2019 Jun 14;10(1):2632. doi: 10.1038/s41467-019-10602-5.
9
Functional genomic assays to annotate enhancer-promoter interactions genome wide.
Hum Mol Genet. 2022 Oct 20;31(R1):R97-R104. doi: 10.1093/hmg/ddac204.
10
Systematic mapping of functional enhancer-promoter connections with CRISPR interference.
Science. 2016 Nov 11;354(6313):769-773. doi: 10.1126/science.aag2445. Epub 2016 Sep 29.

引用本文的文献

1
Unveiling the regulatory potential of the non-coding genome: Insights from the human genome project to precision medicine.
Genes Dis. 2025 Apr 22;12(6):101652. doi: 10.1016/j.gendis.2025.101652. eCollection 2025 Nov.
2
3
Illuminating the Noncoding Genome in Cancer Using Artificial Intelligence.
Cancer Res. 2025 Jul 2;85(13):2368-2375. doi: 10.1158/0008-5472.CAN-25-0482.
4
Cardiovascular disease-associated non-coding variants disrupt GATA4-DNA binding and regulatory functions.
HGG Adv. 2025 Apr 10;6(2):100415. doi: 10.1016/j.xhgg.2025.100415. Epub 2025 Feb 12.
5
High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine.
Funct Integr Genomics. 2025 Jan 22;25(1):22. doi: 10.1007/s10142-025-01529-w.
7
Effects of urban-induced mutations on ecology, evolution and health.
Nat Ecol Evol. 2024 Jun;8(6):1074-1086. doi: 10.1038/s41559-024-02401-z. Epub 2024 Apr 19.
8
Genome-wide association with footrot in hair and wool sheep.
Front Genet. 2024 Jan 15;14:1297444. doi: 10.3389/fgene.2023.1297444. eCollection 2023.
9
Integration of multi-omics technologies for molecular diagnosis in ataxia patients.
Front Genet. 2024 Jan 4;14:1304711. doi: 10.3389/fgene.2023.1304711. eCollection 2023.
10
Hydrocephalus and Growth Retardation: A Fetal -opathy Missed by Whole-Exome Sequencing.
Mol Syndromol. 2023 Jan;13(6):522-526. doi: 10.1159/000524501. Epub 2022 May 9.

本文引用的文献

1
Recurrent somatic mutations in regulatory regions of human cancer genomes.
Nat Genet. 2015 Jul;47(7):710-6. doi: 10.1038/ng.3332. Epub 2015 Jun 8.
2
Architectural proteins, transcription, and the three-dimensional organization of the genome.
FEBS Lett. 2015 Oct 7;589(20 Pt A):2923-30. doi: 10.1016/j.febslet.2015.05.025. Epub 2015 May 22.
3
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.
Cell. 2015 May 21;161(5):1012-1025. doi: 10.1016/j.cell.2015.04.004. Epub 2015 May 7.
4
Integrative analysis of 111 reference human epigenomes.
Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.
5
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
6
Enhancer variants: evaluating functions in common disease.
Genome Med. 2014 Oct 28;6(10):85. doi: 10.1186/s13073-014-0085-3. eCollection 2014.
7
Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.
Nature. 2014 Jul 24;511(7510):428-34. doi: 10.1038/nature13379. Epub 2014 Jun 22.
9
FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.
Am J Hum Genet. 2014 Jun 5;94(6):809-17. doi: 10.1016/j.ajhg.2014.05.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验