Haanstra Jurgen R, González-Marcano Eglys B, Gualdrón-López Melisa, Michels Paul A M
Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands.
Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
Biochim Biophys Acta. 2016 May;1863(5):1038-48. doi: 10.1016/j.bbamcr.2015.09.015. Epub 2015 Sep 16.
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
属于原生生物动基体目(Kinetoplastea)的生物体的过氧化物酶体,包括锥虫属(Trypanosoma)和利什曼原虫属(Leishmania)的锥虫类寄生虫,在糖酵解和中间代谢的其他部分中发挥关键作用,这一点很独特。它们隔离了大部分糖酵解酶,因此被称为糖体。不同锥虫类物种之间以及每个物种在其生命周期内,其糖体酶含量可能有很大差异,尤其是在数量上。通过自噬清除多余的糖体以及新细胞器群体的生物合成,在使糖体代谢库有效适应其生命周期转变过程中突然遇到的重大营养变化方面发挥着关键作用。糖体生物合成的总体机制与其他生物体中的过氧化物酶体相似,但所涉及的同源过氧化物酶蛋白在序列保守性较低,并且在该过程中介导关键蛋白质 - 蛋白质相互作用的基序也存在差异。酶的正确区室化对于锥虫类代谢的调节至关重要,因此对于它们的生存能力也至关重要。对于布氏锥虫(Trypanosoma brucei),已表明糖体在其生命周期调节中也起着关键作用:一个关键的发育控制开关涉及一种蛋白磷酸酶从细胞质转移到细胞器中。许多糖体蛋白在不同的生命周期阶段有不同程度的磷酸化,这可能表明酶活性的调节是使代谢网络适应所遇到的不同环境条件的另一种方式。