Suppr超能文献

面向域自适应人脸识别的成分字典。

Compositional Dictionaries for Domain Adaptive Face Recognition.

出版信息

IEEE Trans Image Process. 2015 Dec;24(12):5152-65. doi: 10.1109/TIP.2015.2479456. Epub 2015 Sep 16.

Abstract

We present a dictionary learning approach to compensate for the transformation of faces due to the changes in view point, illumination, resolution, and so on. The key idea of our approach is to force domain-invariant sparse coding, i.e., designing a consistent sparse representation of the same face in different domains. In this way, the classifiers trained on the sparse codes in the source domain consisting of frontal faces can be applied to the target domain (consisting of faces in different poses, illumination conditions, and so on) without much loss in recognition accuracy. The approach is to first learn a domain base dictionary, and then describe each domain shift (identity, pose, and illumination) using a sparse representation over the base dictionary. The dictionary adapted to each domain is expressed as the sparse linear combinations of the base dictionary. In the context of face recognition, with the proposed compositional dictionary approach, a face image can be decomposed into sparse representations for a given subject, pose, and illumination. This approach has three advantages. First, the extracted sparse representation for a subject is consistent across domains, and enables pose and illumination insensitive face recognition. Second, sparse representations for pose and illumination can be subsequently used to estimate the pose and illumination condition of a face image. Last, by composing sparse representations for the subject and the different domains, we can also perform pose alignment and illumination normalization. Extensive experiments using two public face data sets are presented to demonstrate the effectiveness of the proposed approach for face recognition.

摘要

我们提出了一种字典学习方法,以补偿由于视点、光照、分辨率等变化导致的人脸变换。我们方法的关键思想是强制进行域不变的稀疏编码,即设计在不同域中相同人脸的一致稀疏表示。这样,在包含正面人脸的源域中基于稀疏码训练的分类器可以应用于目标域(包含不同姿势、光照条件等的人脸),而不会在识别精度上有太大损失。该方法首先学习一个域基础字典,然后使用基础字典上的稀疏表示来描述每个域变换(身份、姿势和光照)。适用于每个域的字典表示为基础字典的稀疏线性组合。在人脸识别的背景下,使用所提出的组合字典方法,可以将人脸图像分解为给定主体、姿势和光照的稀疏表示。该方法具有三个优点。首先,对于给定的主体,提取的稀疏表示在各个域中是一致的,从而实现了对姿势和光照不敏感的人脸识别。其次,姿势和光照的稀疏表示随后可以用于估计人脸图像的姿势和光照条件。最后,通过组合主体和不同域的稀疏表示,我们还可以进行姿势对齐和光照归一化。通过使用两个公共人脸数据集进行的广泛实验,证明了所提出的方法在人脸识别方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验