Suppr超能文献

WESTPA:一个用于加权系综模拟与分析的可互操作、高度可扩展的软件包。

WESTPA: an interoperable, highly scalable software package for weighted ensemble simulation and analysis.

作者信息

Zwier Matthew C, Adelman Joshua L, Kaus Joseph W, Pratt Adam J, Wong Kim F, Rego Nicholas B, Suárez Ernesto, Lettieri Steven, Wang David W, Grabe Michael, Zuckerman Daniel M, Chong Lillian T

机构信息

Department of Chemistry, Drake University, Des Moines, Iowa 50311, United States

出版信息

J Chem Theory Comput. 2015 Feb 10;11(2):800-9. doi: 10.1021/ct5010615.

Abstract

The weighted ensemble (WE) path sampling approach orchestrates an ensemble of parallel calculations with intermittent communication to enhance the sampling of rare events, such as molecular associations or conformational changes in proteins or peptides. Trajectories are replicated and pruned in a way that focuses computational effort on underexplored regions of configuration space while maintaining rigorous kinetics. To enable the simulation of rare events at any scale (e.g., atomistic, cellular), we have developed an open-source, interoperable, and highly scalable software package for the execution and analysis of WE simulations: WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis). WESTPA scales to thousands of CPU cores and includes a suite of analysis tools that have been implemented in a massively parallel fashion. The software has been designed to interface conveniently with any dynamics engine and has already been used with a variety of molecular dynamics (e.g., GROMACS, NAMD, OpenMM, AMBER) and cell-modeling packages (e.g., BioNetGen, MCell). WESTPA has been in production use for over a year, and its utility has been demonstrated for a broad set of problems, ranging from atomically detailed host–guest associations to nonspatial chemical kinetics of cellular signaling networks. The following describes the design and features of WESTPA, including the facilities it provides for running WE simulations and storing and analyzing WE simulation data, as well as examples of input and output.

摘要

加权系综(WE)路径采样方法通过间歇性通信协调一组并行计算,以增强对罕见事件的采样,例如蛋白质或肽中的分子缔合或构象变化。轨迹以一种方式进行复制和修剪,即把计算工作集中在构型空间中未充分探索的区域,同时保持严格的动力学。为了能够在任何规模(例如原子尺度、细胞尺度)模拟罕见事件,我们开发了一个用于执行和分析WE模拟的开源、可互操作且高度可扩展的软件包:WESTPA(具有并行化和分析功能的加权系综模拟工具包)。WESTPA可扩展到数千个CPU核心,并包括一套以大规模并行方式实现的分析工具。该软件设计为可方便地与任何动力学引擎接口,并且已经与各种分子动力学软件包(例如GROMACS、NAMD、OpenMM、AMBER)和细胞建模软件包(例如BioNetGen、MCell)一起使用。WESTPA已经投入使用一年多了,其效用已在一系列广泛的问题中得到证明,从原子尺度详细的主客体缔合到细胞信号网络的非空间化学动力学。以下将描述WESTPA的设计和功能,包括它为运行WE模拟以及存储和分析WE模拟数据提供的工具,以及输入和输出示例。

相似文献

1
WESTPA: an interoperable, highly scalable software package for weighted ensemble simulation and analysis.
J Chem Theory Comput. 2015 Feb 10;11(2):800-9. doi: 10.1021/ct5010615.
2
A Suite of Tutorials for the WESTPA Rare-Events Sampling Software [Article v1.0].
Living J Comput Mol Sci. 2019;1(2). doi: 10.33011/livecoms.1.2.10607. Epub 2019 Oct 4.
3
WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and Analysis of Longer-Timescale Applications.
J Chem Theory Comput. 2022 Feb 8;18(2):638-649. doi: 10.1021/acs.jctc.1c01154. Epub 2022 Jan 19.
4
A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0].
Living J Comput Mol Sci. 2023;5(1). doi: 10.33011/livecoms.5.1.1655.
5
WEDAP: A Python Package for Streamlined Plotting of Molecular Simulation Data.
J Chem Inf Model. 2024 Aug 12;64(15):5749-5755. doi: 10.1021/acs.jcim.4c00867. Epub 2024 Jul 16.
6
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.
Annu Rev Biophys. 2017 May 22;46:43-57. doi: 10.1146/annurev-biophys-070816-033834. Epub 2017 Mar 1.
7
WEDAP: A Python Package for Streamlined Plotting of Molecular Simulation Data.
bioRxiv. 2024 May 21:2024.05.18.594829. doi: 10.1101/2024.05.18.594829.
8
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
SPANA: Spatial decomposition analysis for cellular-scale molecular dynamics simulations.
J Comput Chem. 2024 Mar 30;45(8):498-505. doi: 10.1002/jcc.27260. Epub 2023 Nov 15.

引用本文的文献

1
Design, optimization, and ADMET evaluation of S11a-0000168202: A promising LIMK1 inhibitor for gastric cancer treatment.
PLoS One. 2025 May 14;20(5):e0323699. doi: 10.1371/journal.pone.0323699. eCollection 2025.
3
Unsupervised Learning of Progress Coordinates during Weighted Ensemble Simulations: Application to NTL9 Protein Folding.
J Chem Theory Comput. 2025 Apr 8;21(7):3691-3699. doi: 10.1021/acs.jctc.4c01136. Epub 2025 Mar 19.
4
Regulatory Interactions between APOBEC3B N- and C-Terminal Domains.
J Chem Inf Model. 2025 Apr 14;65(7):3593-3604. doi: 10.1021/acs.jcim.4c02272. Epub 2025 Mar 19.
5
Molecular simulations reveal intricate coupling between agonist-bound β-adrenergic receptors and G protein.
iScience. 2025 Jan 2;28(2):111741. doi: 10.1016/j.isci.2024.111741. eCollection 2025 Feb 21.
6
Regulatory interactions between APOBEC3B N- and C-terminal domains.
bioRxiv. 2024 Dec 12:2024.12.11.628032. doi: 10.1101/2024.12.11.628032.
7
WEDAP: A Python Package for Streamlined Plotting of Molecular Simulation Data.
J Chem Inf Model. 2024 Aug 12;64(15):5749-5755. doi: 10.1021/acs.jcim.4c00867. Epub 2024 Jul 16.
8
Exploring Conformational Landscapes Along Anharmonic Low-Frequency Vibrations.
J Phys Chem B. 2024 Jul 25;128(29):7112-7120. doi: 10.1021/acs.jpcb.4c02743. Epub 2024 Jul 10.
9
AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics.
Int J High Perform Comput Appl. 2021 Sep;35(5):432-451. doi: 10.1177/10943420211006452.
10
PaCS-Toolkit: Optimized Software Utilities for Parallel Cascade Selection Molecular Dynamics (PaCS-MD) Simulations and Subsequent Analyses.
J Phys Chem B. 2024 Apr 18;128(15):3631-3642. doi: 10.1021/acs.jpcb.4c01271. Epub 2024 Apr 5.

本文引用的文献

1
Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins.
J Chem Theory Comput. 2009 Feb 10;5(2):242-56. doi: 10.1021/ct800499p.
3
EMMA: A Software Package for Markov Model Building and Analysis.
J Chem Theory Comput. 2012 Jul 10;8(7):2223-38. doi: 10.1021/ct300274u. Epub 2012 Jun 18.
4
Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.
J Chem Theory Comput. 2013 Jul 9;9(7):2887-99. doi: 10.1021/ct400109a. Epub 2013 Jun 3.
5
On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations.
J Chem Theory Comput. 2014 May 13;10(5):2064-9. doi: 10.1021/ct400919u. Epub 2014 Apr 4.
6
Efficient in silico exploration of RNA interhelical conformations using Euler angles and WExplore.
Nucleic Acids Res. 2014 Oct 29;42(19):12126-37. doi: 10.1093/nar/gku799. Epub 2014 Oct 7.
7
Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories.
J Chem Theory Comput. 2014 Jul 8;10(7):2658-2667. doi: 10.1021/ct401065r. Epub 2014 Mar 3.
8
AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.
J Chem Inf Model. 2014 Oct 27;54(10):3033-43. doi: 10.1021/ci500321g. Epub 2014 Sep 24.
9
WExplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm.
J Phys Chem B. 2014 Apr 3;118(13):3532-42. doi: 10.1021/jp411479c. Epub 2014 Feb 11.
10
Best practices for scientific computing.
PLoS Biol. 2014 Jan;12(1):e1001745. doi: 10.1371/journal.pbio.1001745. Epub 2014 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验