Suppr超能文献

利用全国医疗保险理赔数据加强莱姆病监测。

Using Nation-Wide Health Insurance Claims Data to Augment Lyme Disease Surveillance.

作者信息

Tseng Yi-Ju, Cami Aurel, Goldmann Donald A, DeMaria Alfred, Mandl Kenneth D

机构信息

1 Computational Health Informatics Program, Boston Children's Hospital , Boston, Massachusetts.

2 Department of Pediatrics, Harvard Medical School , Boston, Massachusetts.

出版信息

Vector Borne Zoonotic Dis. 2015 Oct;15(10):591-6. doi: 10.1089/vbz.2015.1790. Epub 2015 Sep 22.

Abstract

OBJECTIVE

Lyme disease (LD) is the most commonly reported tick-borne illness in North America. To improve LD surveillance, we explored claims data as an adjunct data source for monitoring trends in Lyme disease incidence.

METHODS

We retrospectively analyzed claims from a nationwide US health insurance plan, identifying patients with newly diagnosed LD in 13 high-prevalence states over two time periods, 2004-2006 and 2010-2012.

RESULTS

The average LD case incidence as estimated by using claims data in 2010-2012 (75.67 per 100,000 person-years, n = 3474) was 1.50 times higher than 2004-2006 (50.25 per 100,000 person-years, n = 1965) (p < 0.001) and higher than incidence reported by the states to the Centers for Disease Control and Prevention. Among the 13 highest-prevalence states, there were 11 states with increased LD incidence over time.

CONCLUSIONS

Surveillance systems should explore a fusion of data sources, including payer claims that appear to be highly sensitive with limitations, with electronic laboratory data that afford high specificity, but appear to miss cases.

摘要

目的

莱姆病(LD)是北美报告最多的蜱传疾病。为改善莱姆病监测,我们探索了索赔数据作为监测莱姆病发病率趋势的辅助数据源。

方法

我们回顾性分析了美国一项全国性医疗保险计划的索赔数据,确定了2004 - 2006年和2010 - 2012年这两个时间段内13个高流行州新诊断为莱姆病的患者。

结果

2010 - 2012年使用索赔数据估计的莱姆病平均发病率(每10万人年75.67例,n = 3474)比2004 - 2006年(每10万人年50.25例,n = 1965)高出1.50倍(p < 0.001),且高于各州向疾病控制与预防中心报告的发病率。在13个高流行州中,有11个州的莱姆病发病率随时间增加。

结论

监测系统应探索融合多种数据源,包括虽有局限性但似乎高度敏感的付款人索赔数据,以及特异性高但似乎会漏诊病例的电子实验室数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验