Suppr超能文献

UNIPred:蛋白质功能的不平衡感知网络整合与预测

UNIPred: Unbalance-Aware Network Integration and Prediction of Protein Functions.

作者信息

Frasca Marco, Bertoni Alberto, Valentini Giorgio

机构信息

DI - Department of Computer Science, University of Milan , Milan, Italy .

出版信息

J Comput Biol. 2015 Dec;22(12):1057-74. doi: 10.1089/cmb.2014.0110. Epub 2015 Sep 24.

Abstract

The proper integration of multiple sources of data and the unbalance between annotated and unannotated proteins represent two of the main issues of the automated function prediction (AFP) problem. Most of supervised and semisupervised learning algorithms for AFP proposed in literature do not jointly consider these items, with a negative impact on both sensitivity and precision performances, due to the unbalance between annotated and unannotated proteins that characterize the majority of functional classes and to the specific and complementary information content embedded in each available source of data. We propose UNIPred (unbalance-aware network integration and prediction of protein functions), an algorithm that properly combines different biomolecular networks and predicts protein functions using parametric semisupervised neural models. The algorithm explicitly takes into account the unbalance between unannotated and annotated proteins both to construct the integrated network and to predict protein annotations for each functional class. Full-genome and ontology-wide experiments with three eukaryotic model organisms show that the proposed method compares favorably with state-of-the-art learning algorithms for AFP.

摘要

多源数据的恰当整合以及注释蛋白与未注释蛋白之间的不平衡是自动功能预测(AFP)问题的两个主要方面。文献中提出的大多数用于AFP的监督学习和半监督学习算法并未同时考虑这些因素,由于表征大多数功能类别的注释蛋白与未注释蛋白之间的不平衡,以及每个可用数据源中所包含的特定且互补的信息内容,这对灵敏度和精确性表现均产生了负面影响。我们提出了UNIPred(基于不平衡感知的网络整合与蛋白质功能预测)算法,该算法能够恰当地结合不同的生物分子网络,并使用参数化半监督神经模型预测蛋白质功能。该算法在构建整合网络以及预测每个功能类别的蛋白质注释时,都明确考虑了未注释蛋白与注释蛋白之间的不平衡。对三种真核模式生物进行的全基因组和全本体实验表明,所提出的方法与AFP的现有先进学习算法相比具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验