Pillar-Little Elizabeth A, Zhou Ruixin, Guzman Marcelo I
Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States.
J Phys Chem A. 2015 Oct 15;119(41):10349-59. doi: 10.1021/acs.jpca.5b07914. Epub 2015 Oct 1.
Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is proposed to result from the sequential processing of cis,cis-muconic acid, 2- and 3-hydroxy-cis,cis-muconic acid. Overall, these reactions contribute precursors to form aqueous SOA from aromatics in atmospheric aerosols and brown clouds.
生物质燃烧、农业工业活动及化石燃料燃烧产生的天然和人为芳香烃排放为二次气溶胶形成(SOA)提供了前体物质。这些化合物在潮湿对流层条件下如何转化是当前了解其环境归宿的关注焦点。这项研究展示了儿茶酚薄膜(一种存在于生物质燃烧和燃烧气溶胶中的含氧芳香烃模型)在可变相对湿度(RH = 0 - 90%)下于气固界面发生非均相氧化的过程。儿茶酚对O₃(g)的最大反应吸收系数γO₃ = (7.49 ± 0.35) × 10⁻⁶出现在90%相对湿度时。将约104 - μm厚的儿茶酚薄膜暴露于O₃(g)混合比在230 ppbv至25 ppmv之间时,观察到三条主要反应途径。(1)在气固界面处1,2碳 - 碳键断裂,通过初级臭氧化物和氢过氧化物中间体形成顺,顺 - 粘康酸。顺,顺 - 粘康酸进一步直接臭氧化生成乙醛酸、草酸、巴豆酸和马来酸。(2)第二条途径通过在电喷雾电离质谱(MS)和离子色谱MS分析过程中存在拜耳 - 维利格氧化产物(包括戊烯二酸、4 - 羟基 - 2 - 丁烯酸和5 - 氧代 - 2 - 戊烯酸)得以证明。(3)最后,原位产生的羟基自由基(HO(•))间接氧化导致生成半醌自由基中间体,进而合成多羟基化芳香环,如三羟基苯、四羟基苯和五羟基苯。值得注意的是,提取的氧化薄膜中存在的较重多羟基化联苯和三联苯产物是儿茶酚及其多羟基化环的半醌的偶联反应产生的。1,2,3 - 三羟基苯和1,2,4 - 三羟基苯的直接臭氧化分别生成2 - 羟基 - 顺,顺 - 粘康酸和3 - 羟基 - 顺,顺 - 粘康酸。2,4 - 二羟基己 - 2 - 烯二酸或3,4 - 二羟基己 - 2 - 烯二酸的产生被认为是顺,顺 - 粘康酸、2 - 羟基 - 顺,顺 - 粘康酸和3 - 羟基 - 顺,顺 - 粘康酸依次转化的结果。总体而言,这些反应为大气气溶胶和棕色云中由芳烃形成水性SOA提供了前体物质。