Suppr超能文献

人工耳蜗植入者行为舒适水平的电生理关联:一项前瞻性研究。

Electrophysiological Correlates of Behavioral Comfort Levels in Cochlear Implantees: A Prospective Study.

作者信息

Raghunandhan S, Ravikumar A, Kameswaran Mohan, Mandke Kalyani, Ranjith R

机构信息

Madras ENT Research Foundation, No.1, 1st Cross Street, Off. 2nd Main Road, RA Puram, Chennai, 600028 India.

Department of ENT and H & N Surgery, Sri Ramachandra University, Chennai, India.

出版信息

Indian J Otolaryngol Head Neck Surg. 2015 Sep;67(3):210-22. doi: 10.1007/s12070-013-0679-x. Epub 2013 Oct 16.

Abstract

Indications for cochlear implantation have expanded today to include very young children and those with syndromes/multiple handicaps. Programming the implant based on behavioral responses may be tedious for audiologists in such cases, wherein matching an effective MAP and appropriate MAP becomes the key issue in the habilitation program. In 'Difficult to MAP' scenarios, objective measures become paramount to predict optimal current levels to be set in the MAP. We aimed, (a) to study the trends in multi-modal electrophysiological tests and behavioral responses sequentially over the first year of implant use, (b) to generate normative data from the above, (c) to correlate the multi-modal electrophysiological thresholds levels with behavioral comfort levels, and (d) to create predictive formulae for deriving optimal comfort levels (if unknown), using linear and multiple regression analysis. This prospective study included ten profoundly hearing impaired children aged between 2 and 7 years with normal inner ear anatomy and no additional handicaps. They received the Advanced Bionics HiRes 90K Implant with Harmony Speech processor and used HiRes-P with Fidelity 120 strategy. They underwent, Impedance Telemetry, Neural Response Imaging, Electrically Evoked Stapedial Response Telemetry and Electrically Evoked Auditory Brainstem Response tests at 1, 4, 8 and 12 months of implant use, in conjunction with behavioral Mapping. Trends in electrophysiological and behavioral responses were analyzed using paired t test. By Karl Pearson's correlation method, electrode-wise correlations were derived for NRI thresholds versus Most Comfortable Levels (M-Levels) and offset based (apical, mid-array and basal array) correlations for EABR and ESRT thresholds versus M-Levels were calculated over time. These were used to derive predictive formulae by linear and multiple regression analysis. Such statistically predicted M-Levels were compared with the behaviorally recorded M-Levels among the cohort, using Cronbach's Alpha Reliability test method for confirming the efficacy of this method. NRI, ESRT and EABR thresholds showed statistically significant positive correlations with behavioral M-Levels, which improved with implant use over time. These correlations were used to derive predicted M-Levels using regression analysis. Such predicted M-Levels were found to be in proximity to the actual behavioral M-Levels recorded among this cohort and proved to be statistically reliable. When clinically applied, this method was found to be successful among subjects of our study group. Although there existed disparities of a few clinical units, between the actual and predicted comfort levels among the subjects, this statistical method was able to provide a working MAP, close to the behavioral MAP used by these children. The results help to infer that behavioral measurements are mandatory to program cochlear implantees, but in cases where they are difficult to obtain, this study method may be used as reference for obtaining additional inputs, in order to set an optimal MAP. The study explores the trends and correlations between electrophysiological tests and behavioral responses, recorded over time among a cohort of cochlear implantees and provides a statistical method which may be used as a guideline to predict optimal behavioral levels in difficult situations among future implantees. In 'Difficult to MAP' scenarios, following a protocol of sequential behavioral programming, in conjunction with electrophysiological correlates will provide the best outcomes.

摘要

如今,人工耳蜗植入的适应症已扩大到包括幼儿以及患有综合征/多重残疾的患者。在这种情况下,根据行为反应对植入物进行编程对听力学家来说可能很繁琐,其中匹配有效的映射参数(MAP)和合适的MAP成为康复计划中的关键问题。在“难以进行MAP编程”的情况下,客观测量对于预测MAP中要设置的最佳电流水平至关重要。我们的目标是:(a)研究人工耳蜗使用的第一年中多模式电生理测试和行为反应的顺序变化趋势;(b)从上述研究中生成规范数据;(c)将多模式电生理阈值水平与行为舒适水平相关联;(d)使用线性和多元回归分析创建预测公式,以得出最佳舒适水平(如果未知)。这项前瞻性研究包括10名年龄在2至7岁之间的重度听力障碍儿童,他们内耳解剖结构正常且无其他残疾。他们接受了Advanced Bionics HiRes 90K植入体和Harmony语音处理器,并使用了具有120保真策略的HiRes-P。在植入使用后的1、4、8和12个月,他们接受了阻抗遥测、神经反应成像、电诱发镫骨肌反射遥测和电诱发听觉脑干反应测试,并结合行为映射。使用配对t检验分析电生理和行为反应的趋势。通过卡尔·皮尔逊相关方法,得出NRI阈值与最舒适水平(M水平)的电极相关性,并计算随时间变化的基于偏移量(顶端、阵列中部和基底阵列)的EABR和ESRT阈值与M水平的相关性。这些用于通过线性和多元回归分析得出预测公式。使用克朗巴赫α可靠性测试方法,将这些统计预测的M水平与队列中行为记录的M水平进行比较,以确认该方法的有效性。NRI、ESRT和EABR阈值与行为M水平显示出统计学上显著的正相关,并且随着植入使用时间的推移而改善。这些相关性用于通过回归分析得出预测的M水平。发现这种预测的M水平与该队列中记录的实际行为M水平接近,并被证明在统计学上是可靠的。在临床应用时,发现该方法在我们研究组的受试者中是成功的。尽管在受试者的实际舒适水平和预测舒适水平之间存在一些临床单位差异,但这种统计方法能够提供一个接近这些儿童使用的行为MAP的有效MAP。结果有助于推断,行为测量对于人工耳蜗植入者的编程是必不可少的,但在难以获得行为测量的情况下,本研究方法可作为获取额外输入的参考,以便设置最佳MAP。该研究探索了人工耳蜗植入者队列中随时间记录的电生理测试和行为反应之间的趋势和相关性,并提供了一种统计方法,可作为指导,用于预测未来植入者在困难情况下的最佳行为水平。在“难以进行MAP编程”的情况下,遵循顺序行为编程协议并结合电生理相关性将提供最佳结果。

相似文献

1
Electrophysiological Correlates of Behavioral Comfort Levels in Cochlear Implantees: A Prospective Study.
Indian J Otolaryngol Head Neck Surg. 2015 Sep;67(3):210-22. doi: 10.1007/s12070-013-0679-x. Epub 2013 Oct 16.
2
A clinical study of electrophysiological correlates of behavioural comfort levels in cochlear implantees.
Cochlear Implants Int. 2014 May;15(3):145-60. doi: 10.1179/1754762814Y.0000000064. Epub 2014 Mar 7.
3
Cochlear implantees: Analysis of behavioral and objective measures for a clinical population of various age groups.
Cochlear Implants Int. 2015;16 Suppl 4:1-19. doi: 10.1080/14670100.2015.1110372.
5
Prediction of behavioral MCL using electrophysiological responses in children using MED-EL implant.
Int J Pediatr Otorhinolaryngol. 2023 Sep;172:111696. doi: 10.1016/j.ijporl.2023.111696. Epub 2023 Aug 6.
7
Postoperative objective detecting techniques for cochlear implant children with inner ear malformation.
Int J Pediatr Otorhinolaryngol. 2017 Nov;102:1-6. doi: 10.1016/j.ijporl.2017.08.026. Epub 2017 Aug 25.

引用本文的文献

1
Electrical Stapedial Reflex Thresholds in Cochlear Implant Recipients with Cochlear Nerve Deficiency: A Retrospective Study.
Int Arch Otorhinolaryngol. 2025 Sep 10;29(3):1-5. doi: 10.1055/s-0045-1808276. eCollection 2025 Jul.
2
Cochlear Implant Activation in the Immediate Postoperative Period in the Operating Room.
Int Arch Otorhinolaryngol. 2024 Jan 24;28(2):e219-e225. doi: 10.1055/s-0043-1776722. eCollection 2024 Apr.
3
Speech-in-noise performance in objectively determined cochlear implant maps, including the effect of cognitive state.
PLoS One. 2023 Jun 14;18(6):e0286986. doi: 10.1371/journal.pone.0286986. eCollection 2023.
4
Measuring implanted patient response to tone pips.
Biomed Eng Online. 2021 Jan 14;20(1):10. doi: 10.1186/s12938-020-00844-6.
6
Cochlear Implant in Prelingually Deaf Children: Our Experience.
Indian J Otolaryngol Head Neck Surg. 2018 Dec;70(4):544-548. doi: 10.1007/s12070-018-1435-z. Epub 2018 Jun 21.

本文引用的文献

1
Effects of stimulus manipulation on electrophysiological responses in pediatric cochlear implant users. Part I: duration effects.
Hear Res. 2008 Oct;244(1-2):7-14. doi: 10.1016/j.heares.2008.06.011. Epub 2008 Jul 25.
7
Clinical uses of electrically evoked auditory nerve and brainstem responses.
Curr Opin Otolaryngol Head Neck Surg. 2003 Oct;11(5):383-7. doi: 10.1097/00020840-200310000-00013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验