Loukas Constantinos, Georgiou Evangelos
Medical Physics Lab-Simulation Center, School of Medicine, University of Athens, Greece.
Int J Med Robot. 2016 Sep;12(3):387-98. doi: 10.1002/rcs.1702. Epub 2015 Sep 29.
Despite the significant progress in hand gesture analysis for surgical skills assessment, video-based analysis has not received much attention. In this study we investigate the application of various feature detector-descriptors and temporal modeling techniques for laparoscopic skills assessment.
Two different setups were designed: static and dynamic video-histogram analysis. Four well-known feature detection-extraction methods were investigated: SIFT, SURF, STAR-BRIEF and STIP-HOG. For the dynamic setup two temporal models were employed (LDS and GMMAR model). Each method was evaluated for its ability to classify experts and novices on peg transfer and knot tying.
STIP-HOG yielded the best performance (static: 74-79%; dynamic: 80-89%). Temporal models had equivalent performance. Important differences were found between the two groups with respect to the underlying dynamics of the video-histogram sequences.
Temporal modeling of feature histograms extracted from laparoscopic training videos provides information about the skill level and motion pattern of the operator. Copyright © 2015 John Wiley & Sons, Ltd.
尽管在用于手术技能评估的手势分析方面取得了显著进展,但基于视频的分析尚未受到太多关注。在本研究中,我们调查了各种特征检测器 - 描述符和时间建模技术在腹腔镜技能评估中的应用。
设计了两种不同的设置:静态和动态视频直方图分析。研究了四种著名的特征检测 - 提取方法:尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)、快速特征点和二进制鲁棒独立基本特征(STAR - BRIEF)以及时空兴趣点和方向梯度直方图(STIP - HOG)。对于动态设置,采用了两种时间模型(线性动态系统(LDS)和高斯混合自回归模型(GMMAR模型))。评估了每种方法在对专家和新手进行套圈传递和打结分类方面的能力。
STIP - HOG表现最佳(静态:74 - 79%;动态:80 - 89%)。时间模型具有同等性能。在视频直方图序列的潜在动态方面,两组之间发现了重要差异。
从腹腔镜训练视频中提取的特征直方图的时间建模提供了有关操作者技能水平和运动模式的信息。版权所有© 2015约翰威立父子有限公司。