Suppr超能文献

工程化大肠杆菌的裂解物支持将葡萄糖高效转化为2,3-丁二醇。

Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

作者信息

Kay Jennifer E, Jewett Michael C

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.

Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute Northwestern University, Chicago, IL 60611, USA.

出版信息

Metab Eng. 2015 Nov;32:133-142. doi: 10.1016/j.ymben.2015.09.015. Epub 2015 Sep 30.

Abstract

Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation.

摘要

无细胞代谢工程(CFME)正成为一种用于生产目标分子和途径调试的强大方法。不幸的是,高辅因子成本、有限的辅因子和能量再生以及低体积产率阻碍了CFME技术的广泛应用和实际实施。为了应对这些挑战,我们开发了一种无细胞系统,该系统利用从细胞的粗裂解物或提取物中制备的催化蛋白集合来推动高活性的异源代谢转化。作为一个模型途径,我们选择了将葡萄糖转化为2,3-丁二醇(2,3-BD),这是一种具有许多工业应用的中等水平商品化学品。具体而言,我们设计了一株大肠杆菌来表达合成内消旋-2,3-丁二醇(m2,3-BD)所需的三种途径酶。然后我们证明,添加葡萄糖以及催化量的辅因子NAD+和ATP后,该菌株的裂解物能够产生m2,3-BD。内源性糖酵解酶将葡萄糖转化为丙酮酸,这是m2,3-BD合成的起始中间体。令人惊讶的是,在没有菌株优化的情况下,我们在分批反应中观察到m2,3-BD的最大合成速率为11.3±0.1 g/L/h,理论产率为71%(0.36 g m2,3-BD/g葡萄糖)。在30小时的补料分批反应中,滴度达到82±8 g/L m2,3-BD。我们的结果突出了无细胞裂解物中高水平辅因子再生的能力。此外,它们还表明了令人兴奋的机会,即当生物转化产率(g产物/L)、生产率(g产物/L/h)或细胞毒性限制全细胞发酵的商业可行性时,使用基于裂解物的系统快速构建代谢途径原型并进行分子转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验