Chen Gin-Fu, Sudhahar Varadarajan, Youn Seock-Won, Das Archita, Cho Jaehyung, Kamiya Tetsuro, Urao Norifumi, McKinney Ronald D, Surenkhuu Bayasgalan, Hamakubo Takao, Iwanari Hiroko, Li Senlin, Christman John W, Shantikumar Saran, Angelini Gianni D, Emanueli Costanza, Ushio-Fukai Masuko, Fukai Tohru
Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.
Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL.
Sci Rep. 2015 Oct 6;5:14780. doi: 10.1038/srep14780.
Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1(-/-) mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease.
铜(Cu)作为一种必需的微量营养素,在炎症和血管生成中发挥着重要作用;然而,其确切机制仍不明确。在此,我们揭示了铜转运蛋白抗氧化剂1(Atox1)在炎性新生血管形成中的新作用,Atox1最初被认为是一种铜伴侣蛋白,最近被发现是一种铜依赖性转录因子。在严重肢体缺血的患者和小鼠中,Atox1表达上调。Atox1基因缺陷的小鼠显示肢体灌注恢复受损,动脉生成、血管生成以及炎症细胞募集减少。体内活体显微镜检查、骨髓重建以及在Atox1(-/-)小鼠中进行的Atox1基因转移表明,内皮细胞(ECs)中的Atox1对于新生血管形成和释放血管内皮生长因子(VEGF)及肿瘤坏死因子α(TNFα)的炎症细胞募集至关重要。从机制上讲,Atox1缺失的内皮细胞表明,通过铜转运蛋白ATP7A介导的Atox1的铜伴侣蛋白功能是VEGF诱导血管生成所必需的,其通过激活铜酶赖氨酰氧化酶来实现。此外,Atox1作为NADPH氧化酶组织者p47phox的铜依赖性转录因子发挥作用,从而以不依赖ATP7A的方式增加在TNFα刺激下发生炎症的内皮细胞中ROS-NFκB-VCAM-1/ICAM-1的表达以及单核细胞黏附。这些发现揭示了Atox1与参与炎性新生血管形成的NADPH氧化酶之间的新联系,并表明Atox1作为治疗缺血性疾病的潜在治疗靶点。