Suppr超能文献

来自乳酸菌的生物聚合物。在食品和饮料中的新应用。

Biopolymers from lactic acid bacteria. Novel applications in foods and beverages.

作者信息

Torino María I, Font de Valdez Graciela, Mozzi Fernanda

机构信息

Technology Department, Centro de Referencia para Lactobacilos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina.

出版信息

Front Microbiol. 2015 Sep 11;6:834. doi: 10.3389/fmicb.2015.00834. eCollection 2015.

Abstract

Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.

摘要

乳酸菌(LAB)是在全球发酵食品工业中广泛使用的微生物。某些乳酸菌能够产生附着在细胞壁上的胞外多糖(EPS)(荚膜EPS)或释放到细胞外环境中的EPS。根据其组成,乳酸菌可以合成杂多糖或同多糖。就其单体组成、分子量和结构而言,乳酸菌产生的EPS种类繁多。尽管传统上已将产生EPS的乳酸菌菌株应用于发酵乳和酸奶等乳制品的生产中,但它们在低脂奶酪、各种酸面团面包和某些饮料的制作中的应用是这些聚合物的一些新应用。这项工作旨在收集以往关于乳酸菌EPS的单体组成、结构、产量和生物合成酶的综述中最相关的问题;描述最近鉴定的EPS,并介绍产生EPS的菌株及其聚合物在发酵(特别是饮料和谷物基)食品工业中的应用。

相似文献

1
Biopolymers from lactic acid bacteria. Novel applications in foods and beverages.
Front Microbiol. 2015 Sep 11;6:834. doi: 10.3389/fmicb.2015.00834. eCollection 2015.
5
Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.
Appl Microbiol Biotechnol. 2016 Feb;100(3):1121-1135. doi: 10.1007/s00253-015-7172-2. Epub 2015 Dec 1.
6
Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms.
Appl Microbiol Biotechnol. 2016 May;100(9):3877-86. doi: 10.1007/s00253-016-7471-2. Epub 2016 Mar 28.
7
Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry.
PLoS One. 2020 Jul 23;15(7):e0236190. doi: 10.1371/journal.pone.0236190. eCollection 2020.
8
Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications.
Int J Biol Macromol. 2021 Mar 15;173:79-89. doi: 10.1016/j.ijbiomac.2021.01.110. Epub 2021 Jan 19.
9
Isolation and characterization of an exopolysaccharide-producing Leuconostoc citreum strain from artisanal cheese.
Lett Appl Microbiol. 2018 Dec;67(6):570-578. doi: 10.1111/lam.13073. Epub 2018 Oct 18.

引用本文的文献

2
Potential Future Applications of Postbiotics in the Context of Ensuring Food Safety and Human Health Improvement.
Antibiotics (Basel). 2025 Jul 3;14(7):674. doi: 10.3390/antibiotics14070674.
3
Advances in Microbial Exopolysaccharides: Present and Future Applications.
Biomolecules. 2024 Sep 16;14(9):1162. doi: 10.3390/biom14091162.
4
EPS Production by Using Glycerol, Glucose, and Molasses as Carbon Sources.
Microorganisms. 2024 Jun 6;12(6):1159. doi: 10.3390/microorganisms12061159.
7
Probing the functional and therapeutic properties of postbiotics in relation to their industrial application.
Food Sci Nutr. 2023 Jun 6;11(8):4472-4484. doi: 10.1002/fsn3.3465. eCollection 2023 Aug.
8
Recent Progress in 1,2- glycosylation for Glucan Synthesis.
Molecules. 2023 Jul 25;28(15):5644. doi: 10.3390/molecules28155644.
9
Comparison between Antimicrobial and Antibiofilm Activity of Exopolysaccharides (EPS) Extracted from and against Oral Bacteria.
Arch Razi Inst. 2022 Dec 31;77(6):2215-2221. doi: 10.22092/ARI.2022.358341.2203. eCollection 2022 Dec.
10
Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application.
Polymers (Basel). 2023 Mar 20;15(6):1539. doi: 10.3390/polym15061539.

本文引用的文献

1
Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1.
Carbohydr Polym. 2012 Jan 4;87(1):910-915. doi: 10.1016/j.carbpol.2011.08.094. Epub 2011 Sep 3.
2
In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria.
Carbohydr Polym. 2012 Jan 4;87(1):846-852. doi: 10.1016/j.carbpol.2011.08.085. Epub 2011 Sep 2.
3
Role of the luxS gene in initial biofilm formation by Streptococcus mutans.
J Mol Microbiol Biotechnol. 2015;25(1):60-8. doi: 10.1159/000371816.
5
Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.
J Dairy Sci. 2015 May;98(5):2843-52. doi: 10.3168/jds.2014-8660. Epub 2015 Mar 6.
6
The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors.
Mol Microbiol. 2015 May;96(4):875-86. doi: 10.1111/mmi.12978. Epub 2015 Mar 16.
7
Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota.
Crit Rev Food Sci Nutr. 2016 Jul 3;56(9):1440-53. doi: 10.1080/10408398.2013.770728.
9
Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella.
Food Microbiol. 2015 Apr;46:418-427. doi: 10.1016/j.fm.2014.08.022. Epub 2014 Sep 7.
10
Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution.
Int J Biol Macromol. 2015 Jan;72:1429-34. doi: 10.1016/j.ijbiomac.2014.10.015. Epub 2014 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验