Suppr超能文献

使用变异效应评分工具(VEST-Indel)评估插入和缺失变异的致病性。

Assessing the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST-Indel).

作者信息

Douville Christopher, Masica David L, Stenson Peter D, Cooper David N, Gygax Derek M, Kim Rick, Ryan Michael, Karchin Rachel

机构信息

Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland.

Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.

出版信息

Hum Mutat. 2016 Jan;37(1):28-35. doi: 10.1002/humu.22911. Epub 2015 Oct 26.

Abstract

Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features--DNA and protein sequence conservation, indel length, and occurrence in repeat regions--are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in-frame and frameshift indels (VEST-indel) as pathogenic or benign. We apply 24 features, including a new "PubMed" feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false-positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta-predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta-predictor with improved performance over any individual method.

摘要

插入/缺失变异(indels)会改变蛋白质序列和长度,但在健康人群中却高度普遍,这给生物信息学分类器带来了挑战。常用特征——DNA和蛋白质序列保守性、indel长度以及在重复区域中的出现情况——对于推断蛋白质损伤很有用。然而,这些特征在预测indels对疾病的影响时可能会导致假阳性。现有的indel分类方法特异性较低,严重限制了临床应用。在此,我们进一步开发了我们的变异效应评分工具(VEST),以将框内和移码indels(VEST-indel)分类为致病或良性。我们应用24种特征,包括一种新的“PubMed”特征,来估计基因在人类疾病中的重要性。与四种现有的indel分类器相比,我们的方法实现了大幅降低的假阳性率,特异性提高了多达90%。这种估计基因重要性的方法可能普遍适用于错义及其他生物信息学致病性预测器,这些预测器往往无法实现高特异性。最后,我们测试了所有可能通过使用布尔合取和析取组合四种不同indel分类器而获得的元预测器,并得出了一种性能优于任何单个方法的元预测器。

相似文献

1
3
Vindel: a simple pipeline for checking indel redundancy.
BMC Bioinformatics. 2014 Nov 19;15(1):359. doi: 10.1186/s12859-014-0359-1.
4
Evaluation of in silico pathogenicity prediction tools for the classification of small in-frame indels.
BMC Med Genomics. 2023 Feb 28;16(1):36. doi: 10.1186/s12920-023-01454-6.
5
PredCID: prediction of driver frameshift indels in human cancer.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa119.
6
INDELpred: Improving the prediction and interpretation of indel pathogenicity within the clinical genome.
HGG Adv. 2024 Oct 10;5(4):100325. doi: 10.1016/j.xhgg.2024.100325. Epub 2024 Jul 10.
9
Identifying Mendelian disease genes with the variant effect scoring tool.
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2164-14-S3-S3. Epub 2013 May 28.

引用本文的文献

2
Structural and energetic analysis of stabilizing indel mutations.
bioRxiv. 2024 Dec 21:2024.12.18.629072. doi: 10.1101/2024.12.18.629072.
3
The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort.
NPJ Genom Med. 2024 Dec 4;9(1):62. doi: 10.1038/s41525-024-00444-6.
4
Identification of osteoporosis genes using family studies.
Front Endocrinol (Lausanne). 2024 Oct 22;15:1455689. doi: 10.3389/fendo.2024.1455689. eCollection 2024.
7
Expanding the genotypic and phenotypic spectra with a novel variant in the ciliopathy gene, , associated with selective cone degeneration.
Ophthalmic Genet. 2024 Dec;45(6):633-639. doi: 10.1080/13816810.2024.2369271. Epub 2024 Sep 4.
9
Synergic activity of FGFR2 and MEK inhibitors in the treatment of FGFR2-amplified cancers of unknown primary.
Mol Ther. 2024 Oct 2;32(10):3650-3668. doi: 10.1016/j.ymthe.2024.07.011. Epub 2024 Jul 20.

本文引用的文献

2
Ensembl 2015.
Nucleic Acids Res. 2015 Jan;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub 2014 Oct 28.
4
PopGenome: an efficient Swiss army knife for population genomic analyses in R.
Mol Biol Evol. 2014 Jul;31(7):1929-36. doi: 10.1093/molbev/msu136. Epub 2014 Apr 16.
5
A general framework for estimating the relative pathogenicity of human genetic variants.
Nat Genet. 2014 Mar;46(3):310-5. doi: 10.1038/ng.2892. Epub 2014 Feb 2.
6
ClinVar: public archive of relationships among sequence variation and human phenotype.
Nucleic Acids Res. 2014 Jan;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub 2013 Nov 14.
7
SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins.
PLoS One. 2013 Oct 23;8(10):e77940. doi: 10.1371/journal.pone.0077940. eCollection 2013.
10
Identifying Mendelian disease genes with the variant effect scoring tool.
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2164-14-S3-S3. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验