Suppr超能文献

DNA错配修复

DNA Mismatch Repair.

作者信息

Marinus M G

出版信息

EcoSal Plus. 2012 Nov;5(1). doi: 10.1128/ecosalplus.7.2.5.

Abstract

DNA mismatch repair (MMR) corrects replication errors in newly synthesized DNA. It also has an antirecombination action on heteroduplexes that contain similar but not identical sequences. This review focuses on the genetics and development of MMR and not on the latest biochemical mechanisms. The main focus is on MMR in Escherichia coli, but examples from Streptococcuspneumoniae and Bacillussubtilis have also been included. In most organisms, only MutS (detects mismatches) and MutL (an endonuclease) and a single exonucleaseare present. How this system discriminates between newlysynthesized and parental DNA strands is not clear. In E. coli and its relatives, however, Dam methylation is an integral part of MMR and is the basis for strand discrimination. A dedicated site-specific endonuclease, MutH, is present, andMutL has no endonuclease activity; four exonucleases can participate in MMR. Although it might seem that the accumulated wealth of genetic and biochemical data has given us a detailed picture of the mechanism of MMR in E. coli, the existence of three competing models to explain the initiation phase indicates the complexity of the system. The mechanism of the antirecombination action of MMR is largely unknown, but only MutS and MutL appear to be necessary. A primary site of action appears to be on RecA, although subsequent steps of the recombination process can also be inhibited. In this review, the genetics of Very Short Patch (VSP) repair of T/G mismatches arising from deamination of 5-methylcytosineresidues is also discussed.

摘要

DNA错配修复(MMR)可纠正新合成DNA中的复制错误。它对含有相似但不完全相同序列的异源双链体也具有抗重组作用。本综述聚焦于MMR的遗传学和发展,而非最新的生化机制。主要关注点是大肠杆菌中的MMR,但也包含了肺炎链球菌和枯草芽孢杆菌的例子。在大多数生物体中,仅存在MutS(检测错配)、MutL(一种核酸内切酶)和一种单一的核酸外切酶。该系统如何区分新合成的DNA链和亲本DNA链尚不清楚。然而,在大肠杆菌及其相关菌中,Dam甲基化是MMR不可或缺的一部分,也是链区分的基础。存在一种专门的位点特异性核酸内切酶MutH,且MutL没有核酸内切酶活性;四种核酸外切酶可参与MMR。尽管似乎大量积累的遗传和生化数据已让我们详细了解了大肠杆菌中MMR的机制,但存在三种相互竞争的模型来解释起始阶段,这表明了该系统的复杂性。MMR抗重组作用的机制很大程度上未知,但似乎只有MutS和MutL是必需的。一个主要作用位点似乎是在RecA上,尽管重组过程的后续步骤也可被抑制。在本综述中,还讨论了由5 - 甲基胞嘧啶残基脱氨基产生的T/G错配的极短补丁(VSP)修复的遗传学。

相似文献

1
DNA Mismatch Repair.
EcoSal Plus. 2012 Nov;5(1). doi: 10.1128/ecosalplus.7.2.5.
3
Stoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair.
Nucleic Acids Res. 2012 May;40(9):3929-38. doi: 10.1093/nar/gkr1298. Epub 2012 Jan 12.
4
Physical and functional interactions between Escherichia coli MutL and the Vsr repair endonuclease.
Nucleic Acids Res. 2009 Jul;37(13):4453-63. doi: 10.1093/nar/gkp380. Epub 2009 May 27.
5
DNA mismatch repair and mutation avoidance pathways.
J Cell Physiol. 2002 Apr;191(1):28-41. doi: 10.1002/jcp.10077.
6
Evolution of the methyl directed mismatch repair system in Escherichia coli.
DNA Repair (Amst). 2016 Feb;38:32-41. doi: 10.1016/j.dnarep.2015.11.016. Epub 2015 Dec 2.
8
Spatial coupling between DNA replication and mismatch repair in Caulobacter crescentus.
Nucleic Acids Res. 2021 Apr 6;49(6):3308-3321. doi: 10.1093/nar/gkab112.
9
Synergism of Dam, MutH, and MutS in methylation-directed mismatch repair in Escherichia coli.
Mutat Res. 2017 Jan;795:31-33. doi: 10.1016/j.mrfmmm.2016.12.002. Epub 2017 Jan 6.
10
Endonuclease-independent DNA mismatch repair processes on the lagging strand.
DNA Repair (Amst). 2018 Aug;68:41-49. doi: 10.1016/j.dnarep.2018.06.002. Epub 2018 Jun 12.

引用本文的文献

1
Effect of Mutations on the Evolution of Extended Spectrum β-lactamases (ESBL).
Protein J. 2025 Aug 19. doi: 10.1007/s10930-025-10284-7.
3
Amplified DNA heterogeneity assessment with Oxford Nanopore sequencing applied to cell free expression templates.
PLoS One. 2024 Dec 3;19(12):e0305457. doi: 10.1371/journal.pone.0305457. eCollection 2024.
5
Mechanisms of radiation-induced tissue damage and response.
MedComm (2020). 2024 Sep 20;5(10):e725. doi: 10.1002/mco2.725. eCollection 2024 Oct.
7
Manufacturing DNA in yields higher-fidelity DNA than enzymatic synthesis.
Mol Ther Methods Clin Dev. 2024 Feb 28;32(2):101227. doi: 10.1016/j.omtm.2024.101227. eCollection 2024 Jun 13.
8
Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in .
Microorganisms. 2023 Dec 18;11(12):3005. doi: 10.3390/microorganisms11123005.
9
Mutators can drive the evolution of multi-resistance to antibiotics.
PLoS Genet. 2023 Jun 13;19(6):e1010791. doi: 10.1371/journal.pgen.1010791. eCollection 2023 Jun.

本文引用的文献

1
Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork.
Mol Microbiol. 2011 Nov;82(3):648-63. doi: 10.1111/j.1365-2958.2011.07841.x. Epub 2011 Sep 30.
2
Regulation by small RNAs in bacteria: expanding frontiers.
Mol Cell. 2011 Sep 16;43(6):880-91. doi: 10.1016/j.molcel.2011.08.022.
3
Hfq and its constellation of RNA.
Nat Rev Microbiol. 2011 Aug 15;9(8):578-89. doi: 10.1038/nrmicro2615.
5
Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair.
EMBO J. 2011 Jun 10;30(14):2881-93. doi: 10.1038/emboj.2011.180.
6
The endonuclease domain of MutL interacts with the β sliding clamp.
DNA Repair (Amst). 2011 Jan 2;10(1):87-93. doi: 10.1016/j.dnarep.2010.10.003. Epub 2010 Nov 2.
7
Seeing mutations in living cells.
Curr Biol. 2010 Aug 24;20(16):1432-7. doi: 10.1016/j.cub.2010.06.071. Epub 2010 Jul 30.
8
Structure of the endonuclease domain of MutL: unlicensed to cut.
Mol Cell. 2010 Jul 9;39(1):145-51. doi: 10.1016/j.molcel.2010.06.027.
9
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair.
J Bacteriol. 2010 Jul;192(13):3452-63. doi: 10.1128/JB.01435-09. Epub 2010 May 7.
10
Lessons learned from UvrD helicase: mechanism for directional movement.
Annu Rev Biophys. 2010;39:367-85. doi: 10.1146/annurev.biophys.093008.131415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验