Suppr超能文献

基于辐射力和声流对复杂颗粒进行声流体操控的数值模拟

Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.

作者信息

Hahn Philipp, Leibacher Ivo, Baasch Thierry, Dual Jurg

机构信息

Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.

出版信息

Lab Chip. 2015 Nov 21;15(22):4302-13. doi: 10.1039/c5lc00866b.

Abstract

The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices as it allows for a simple and direct comparison with experimental observations. However, such a numerical setup requires detailed modeling of the acoustofluidic device with all its components and thorough understanding of the acoustofluidic forces inducing the particle motion. In this work, we present a 3D trajectory simulation setup that covers the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radiation force simulation, and the calculation of the hydrodynamic drag. In order to make quantitatively accurate predictions of the device vibration and the acoustic field, we include the viscous boundary layer damping. Using a semi-analytical method based on Nyborg's calculations, the boundary-driven acoustic streaming is derived directly from the device simulation and takes into account cavity wall vibrations which have often been neglected in the literature. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental microdevices can be predicted. We simulate the rotation of a microfiber in an amplitude-modulated 2D field and analyze the results with respect to experimental observations. For a quantitative verification, the motion of an alumina microdisk is compared to a simple experiment. Demonstrating the potential of the simulation setup, we compute the trajectory of a red blood cell inside a realistic microdevice under the simultaneous effects of acoustic streaming and radiation forces.

摘要

声流控颗粒运动的数值预测对于声流控设备的设计、分析和物理理解有很大帮助,因为它可以与实验观测结果进行简单直接的比较。然而,这样的数值设置需要对声流控设备及其所有组件进行详细建模,并透彻理解引起颗粒运动的声流控力。在这项工作中,我们提出了一种涵盖全频谱的三维轨迹模拟设置,包括时谐设备模型、流体腔的声流模型、辐射力模拟以及流体动力阻力的计算。为了对设备振动和声场进行定量准确的预测,我们考虑了粘性边界层阻尼。使用基于尼伯格计算的半解析方法,边界驱动的声流直接从设备模拟中导出,并考虑了文献中经常被忽略的腔壁振动。通过数值计算声学辐射力和流体动力阻力来处理任意形状、结构和尺寸的颗粒。通过这种方式,可以预测实验微设备内复杂的三维颗粒平移和旋转。我们模拟了微纤维在调幅二维场中的旋转,并根据实验观测结果分析了结果。为了进行定量验证,将氧化铝微盘的运动与一个简单实验进行了比较。为了展示模拟设置的潜力,我们计算了在声流和辐射力同时作用下,实际微设备内红细胞的轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验