Suppr超能文献

棕色固氮菌的铁载体代谢组

The Siderophore Metabolome of Azotobacter vinelandii.

作者信息

Baars Oliver, Zhang Xinning, Morel François M M, Seyedsayamdost Mohammad R

机构信息

Department of Geosciences, Princeton University, Princeton, New Jersey, USA.

Department of Geosciences, Princeton University, Princeton, New Jersey, USA

出版信息

Appl Environ Microbiol. 2015 Oct 9;82(1):27-39. doi: 10.1128/AEM.03160-15. Print 2016 Jan 1.

Abstract

In this study, we performed a detailed characterization of the siderophore metabolome, or "chelome," of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production.

摘要

在本研究中,我们对农业上重要且被广泛研究的模式生物维涅兰德固氮菌的铁载体代谢组(即“螯合物组”)进行了详细表征。使用一种新的高分辨率液相色谱 - 质谱联用(LC - MS)方法,我们发现了超过35种金属结合次生代谢产物,这表明维涅兰德固氮菌拥有庞大的螯合物组。其中包括弧菌素,一种此前仅在海洋细菌中观察到的铁载体。对不同铁源和铁有效性条件下固氮生长过程中铁载体产生的定量分析表明,在所有测试条件下,弧菌素在所有铁载体中浓度最高,并表明弧菌素在土壤环境中具有新作用。生物信息学搜索证实了固氮菌属及其他多个门、栖息地和生活方式的细菌具有产生弧菌素的能力。此外,我们的研究揭示了维涅兰德固氮菌所有已知铁载体的大量此前未报道的衍生物,并基于基因组分析对其来源进行了合理化解释,这对铁载体的多样性和进化具有重要意义。总之,这些见解为维涅兰德固氮菌为何拥有多个铁载体生物合成基因簇提供了线索。再加上越来越多证据表明铁载体具有多种功能,可以用作用于铁载体产生的多种不同进化压力来解释维涅兰德固氮菌庞大的螯合物组。

相似文献

1
The Siderophore Metabolome of Azotobacter vinelandii.
Appl Environ Microbiol. 2015 Oct 9;82(1):27-39. doi: 10.1128/AEM.03160-15. Print 2016 Jan 1.
2
Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation.
Environ Microbiol. 2017 Sep;19(9):3595-3605. doi: 10.1111/1462-2920.13857. Epub 2017 Aug 14.
3
Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress.
Microbiology (Reading). 2000 Jul;146 ( Pt 7):1617-1626. doi: 10.1099/00221287-146-7-1617.
4
Azotobacter vinelandii gene clusters for two types of peptidic and catechol siderophores produced in response to molybdenum.
J Appl Microbiol. 2011 Oct;111(4):932-8. doi: 10.1111/j.1365-2672.2011.05109.x. Epub 2011 Aug 11.
6
Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii.
Appl Environ Microbiol. 2000 Apr;66(4):1580-6. doi: 10.1128/AEM.66.4.1580-1586.2000.
7
Crochelins: Siderophores with an Unprecedented Iron-Chelating Moiety from the Nitrogen-Fixing Bacterium Azotobacter chroococcum.
Angew Chem Int Ed Engl. 2018 Jan 8;57(2):536-541. doi: 10.1002/anie.201709720. Epub 2017 Dec 8.
8
The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export.
FEMS Microbiol Lett. 2003 Nov 21;228(2):211-6. doi: 10.1016/S0378-1097(03)00753-5.

引用本文的文献

1
Degradation of catecholate, hydroxamate, and carboxylate model siderophores by extracellular enzymes.
PLoS One. 2025 Aug 19;20(8):e0330432. doi: 10.1371/journal.pone.0330432. eCollection 2025.
3
Insights into the genome of Azotobacter sp. strain CWF10, isolated from an agricultural field in Central India.
Access Microbiol. 2025 Jan 28;7(1). doi: 10.1099/acmi.0.000930.v4. eCollection 2025.
4
Genome-Guided Metabolomic Profiling of Peptaibol-Producing .
Int J Mol Sci. 2025 Jun 11;26(12):5599. doi: 10.3390/ijms26125599.
6
Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity.
J Zhejiang Univ Sci B. 2024 May 21;25(12):1039-1054. doi: 10.1631/jzus.B2300914.
7
Production of the siderophore lysochelin in rich media through maltose-promoted high-density growth of sp. 3655.
Front Microbiol. 2024 Jun 26;15:1433983. doi: 10.3389/fmicb.2024.1433983. eCollection 2024.
8
LFQRatio: A Normalization Method to Decipher Quantitative Proteome Changes in Microbial Coculture Systems.
J Proteome Res. 2024 Mar 1;23(3):999-1013. doi: 10.1021/acs.jproteome.3c00714. Epub 2024 Feb 14.
9
Inactivation of siderophore iron-chelating moieties by the fungal wheat root symbiont Pyrenophora biseptata.
Environ Microbiol Rep. 2024 Feb;16(1):e13234. doi: 10.1111/1758-2229.13234. Epub 2024 Jan 19.
10
Iron Homeostasis in .
Biology (Basel). 2023 Nov 12;12(11):1423. doi: 10.3390/biology12111423.

本文引用的文献

1
The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management.
Microbiology (Reading). 1998 Jul;144(7):1747-1754. doi: 10.1099/00221287-144-7-1747.
2
Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412).
PLoS One. 2015 Jun 10;10(6):e0127997. doi: 10.1371/journal.pone.0127997. eCollection 2015.
3
ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.
Anal Chem. 2014 Nov 18;86(22):11298-305. doi: 10.1021/ac503000e. Epub 2014 Nov 4.
4
Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.
Analyst. 2014 Dec 7;139(23):6096-9. doi: 10.1039/c4an01461h. Epub 2014 Oct 9.
6
The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14. doi: 10.1093/nar/gkt1226. Epub 2013 Nov 29.
8
9
antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W204-12. doi: 10.1093/nar/gkt449. Epub 2013 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验