Kurdyak Paul, Lin Elizabeth, Green Diane, Vigod Simone
Director, Health Systems Research, Social and Epidemiological Research, Centre for Addiction and Mental Health, Toronto, Ontario; Lead, Mental Health and Addictions Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario; Assistant Professor, Department of Psychiatry and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario.
Research Scientist, Provincial System Support Program, Centre for Addiction and Mental Health, Toronto, Ontario; Adjunct Scientist, Institute for Clinical Evaluative Sciences, Toronto, Ontario; Associate Professor, Department of Psychiatry, University of Toronto, Toronto, Ontario.
Can J Psychiatry. 2015 Aug;60(8):362-8. doi: 10.1177/070674371506000805.
To validate algorithms to detect people with chronic psychotic illness in population-based health administrative databases.
We developed 8 algorithms to detect chronic psychotic illness using hospitalization and physician service claims data from administrative health databases in Ontario to identify cases of chronic psychotic illness between 2002 and 2007. Diagnostic data abstracted from the records of 281 randomly selected psychiatric patients from 2 hospitals in Toronto were linked to the administrative data cohort to test sensitivity, specificity, and positive predictive values (PPV) and negative predictive values.
Using only hospitalization data to capture chronic psychotic illness yielded the highest specificity (range 69.9% to 84.7%) and the highest PPV (range 55.2% to 80.8%). Using physician service claims in addition to hospitalization data to capture cases increased sensitivity (range 90.1% to 98.8%) but decreased specificity (range 31.1% to 68.0%) and PPV (range 38.4% to 71.1%).
Using health administrative data to study population-based outcomes for people with chronic psychotic illness is feasible and valid. Researchers can select case identification methods based on whether a more sensitive or more specific definition of chronic psychotic illness is desired.
在基于人群的健康管理数据库中验证用于检测慢性精神病患者的算法。
我们开发了8种算法,利用安大略省管理型医疗数据库中的住院和医生服务索赔数据来检测慢性精神病,以识别2002年至2007年期间的慢性精神病病例。从多伦多2家医院随机抽取的281名精神科患者的记录中提取的诊断数据与管理数据队列相关联,以测试敏感性、特异性、阳性预测值(PPV)和阴性预测值。
仅使用住院数据来捕捉慢性精神病,特异性最高(范围为69.9%至84.7%),PPV最高(范围为55.2%至80.8%)。除住院数据外,使用医生服务索赔来捕捉病例可提高敏感性(范围为90.1%至98.8%),但会降低特异性(范围为31.1%至68.0%)和PPV(范围为38.4%至71.1%)。
利用健康管理数据研究慢性精神病患者基于人群的结局是可行且有效的。研究人员可根据对慢性精神病更敏感或更特异的定义来选择病例识别方法。