Suppr超能文献

表皮生长因子受体(EGFR)突变通过表观基因组和转录因子网络重塑促进胶质母细胞瘤。

EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling.

作者信息

Liu Feng, Hon Gary C, Villa Genaro R, Turner Kristen M, Ikegami Shiro, Yang Huijun, Ye Zhen, Li Bin, Kuan Samantha, Lee Ah Young, Zanca Ciro, Wei Bowen, Lucey Greg, Jenkins David, Zhang Wei, Barr Cathy L, Furnari Frank B, Cloughesy Timothy F, Yong William H, Gahman Timothy C, Shiau Andrew K, Cavenee Webster K, Ren Bing, Mischel Paul S

机构信息

Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.

Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.

出版信息

Mol Cell. 2015 Oct 15;60(2):307-18. doi: 10.1016/j.molcel.2015.09.002. Epub 2015 Oct 8.

Abstract

Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy.

摘要

表皮生长因子受体(EGFR)基因扩增和突变是胶质母细胞瘤(GBM)中最常见的致癌事件,但其促进肿瘤侵袭性生长的机制尚不清楚。在这里,通过对细胞系、基因分型的临床样本和TCGA数据进行综合表观基因组和转录组分析,我们发现EGFR突变重塑了GBM的激活增强子景观,在体外和体内通过SOX9和FOXG1依赖的转录调控网络促进肿瘤发生。最常见的EGFR突变EGFRvIII以SOX9、FOXG1依赖的方式使GBM细胞对BET-溴结构域抑制剂JQ1敏感。这些结果确定了转录/表观遗传重塑在EGFR依赖性发病机制中的作用,并为表观遗传治疗提供了机制基础。

相似文献

1
EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling.
Mol Cell. 2015 Oct 15;60(2):307-18. doi: 10.1016/j.molcel.2015.09.002. Epub 2015 Oct 8.
3
TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma.
Nat Commun. 2017 Nov 13;8(1):1454. doi: 10.1038/s41467-017-01731-w.
6
FOXC2 often overexpressed in glioblastoma enhances proliferation and invasion in glioblastoma cells.
Oncol Res. 2013;21(2):111-20. doi: 10.3727/096504013X13814233062171.
7
Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme.
Exp Cell Res. 2011 Jul 1;317(11):1513-26. doi: 10.1016/j.yexcr.2011.04.001. Epub 2011 Apr 15.
8
Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells.
Mol Oncol. 2018 Jun;12(6):775-787. doi: 10.1002/1878-0261.12168. Epub 2018 Apr 27.
9
EGFR/EGFRvIII remodels the cytoskeleton via epigenetic silencing of AJAP1 in glioma cells.
Cancer Lett. 2017 Sep 10;403:119-127. doi: 10.1016/j.canlet.2017.06.007. Epub 2017 Jun 17.
10
The EGFRvIII variant in glioblastoma multiforme.
J Clin Neurosci. 2009 Jun;16(6):748-54. doi: 10.1016/j.jocn.2008.12.005. Epub 2009 Mar 25.

引用本文的文献

1
Glioblastoma at the crossroads: current understanding and future therapeutic horizons.
Signal Transduct Target Ther. 2025 Jul 9;10(1):213. doi: 10.1038/s41392-025-02299-4.
3
KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma.
Nat Commun. 2025 May 9;16(1):4327. doi: 10.1038/s41467-025-59503-w.
4
Old players and new insights: unraveling the role of RNA-binding proteins in brain tumors.
Theranostics. 2025 Apr 13;15(11):5238-5257. doi: 10.7150/thno.113312. eCollection 2025.
6
Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies.
Cells. 2025 Apr 3;14(7):538. doi: 10.3390/cells14070538.
7
Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes.
Genome Biol. 2025 Jan 17;26(1):10. doi: 10.1186/s13059-025-03474-0.
10
Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials.
J Nanobiotechnology. 2024 Oct 4;22(1):601. doi: 10.1186/s12951-024-02882-x.

本文引用的文献

1
Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma.
Nat Rev Cancer. 2015 May;15(5):302-10. doi: 10.1038/nrc3918. Epub 2015 Apr 9.
2
Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element.
Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.
3
Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling.
Science. 2014 Aug 29;345(6200):1065-70. doi: 10.1126/science.1255104.
4
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12.
5
The mechanisms behind the therapeutic activity of BET bromodomain inhibition.
Mol Cell. 2014 Jun 5;54(5):728-36. doi: 10.1016/j.molcel.2014.05.016.
6
Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells.
Cell. 2014 Apr 24;157(3):580-94. doi: 10.1016/j.cell.2014.02.030. Epub 2014 Apr 10.
7
Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge.
Nat Rev Cancer. 2014 Feb;14(2):92-107. doi: 10.1038/nrc3655.
8
Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature. 2014 Jan 23;505(7484):495-501. doi: 10.1038/nature12912. Epub 2014 Jan 5.
9
Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth.
Nat Commun. 2013;4:2956. doi: 10.1038/ncomms3956.
10
Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA.
Science. 2014 Jan 3;343(6166):72-6. doi: 10.1126/science.1241328. Epub 2013 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验