Liu Jia, Gasbarra Dario, Railavo Juha
Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box (MaD), FI40014, Finland.
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI00014, Finland.
J Neurosci Methods. 2016 Jan 15;257:147-58. doi: 10.1016/j.jneumeth.2015.09.029. Epub 2015 Oct 9.
Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able to transform a non-linear regression problem into the generalized linear modeling framework, reducing dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of the tensor parameter. The new method is implemented and applied using both synthetic and real data in a wide range of b-amplitudes up to 14,000s/mm(2). Higher accuracy and precision of the Rician estimates are achieved compared with other log-normal based methods. In addition, we extend the maximum likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned scheme by specifying the priors. We will describe how close numerically are the estimators of model parameters obtained through MLE and MAP estimation.
扩散张量成像(DTI)被广泛用于在体表征中枢神经系统(CNS)的白质。这种生物组织包含了人类大脑中纤维的许多解剖学、结构和方向信息。位于脑组织中的水分子位移分布的光谱数据由磁共振扫描仪收集,并在傅里叶域中获取。经过傅里叶反演后,噪声分布在实部和虚部均为高斯分布,因此,记录的幅度数据会受到莱斯噪声的影响。扩散的统计估计会导致一个非线性回归问题。在本文中,我们基于期望最大化(EM)算法,提出了一种在莱斯噪声模型下快速计算扩散率最大似然估计(MLE)的方法。通过使用数据增强,我们能够将非线性回归问题转化为广义线性建模框架,从而显著降低计算成本。使用费舍尔评分法来实现张量参数的快速收敛。新方法在高达14,000s/mm²的广泛b值幅度下,使用合成数据和真实数据进行了实现和应用。与其他基于对数正态的方法相比,莱斯估计具有更高的准确性和精度。此外,我们通过指定先验,将最大似然(ML)框架扩展到上述方案下的DTI中的最大后验(MAP)估计。我们将描述通过MLE和MAP估计获得的模型参数估计值在数值上的接近程度。