Suppr超能文献

直接重编程的人类神经元保留与衰老相关的转录组特征并揭示与年龄相关的核质缺陷。

Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects.

作者信息

Mertens Jerome, Paquola Apuã C M, Ku Manching, Hatch Emily, Böhnke Lena, Ladjevardi Shauheen, McGrath Sean, Campbell Benjamin, Lee Hyungjun, Herdy Joseph R, Gonçalves J Tiago, Toda Tomohisa, Kim Yongsung, Winkler Jürgen, Yao Jun, Hetzer Martin W, Gage Fred H

机构信息

Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

Next Generation Sequencing Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Cell Stem Cell. 2015 Dec 3;17(6):705-718. doi: 10.1016/j.stem.2015.09.001. Epub 2015 Oct 8.

Abstract

Aging is a major risk factor for many human diseases, and in vitro generation of human neurons is an attractive approach for modeling aging-related brain disorders. However, modeling aging in differentiated human neurons has proved challenging. We generated neurons from human donors across a broad range of ages, either by iPSC-based reprogramming and differentiation or by direct conversion into induced neurons (iNs). While iPSCs and derived neurons did not retain aging-associated gene signatures, iNs displayed age-specific transcriptional profiles and revealed age-associated decreases in the nuclear transport receptor RanBP17. We detected an age-dependent loss of nucleocytoplasmic compartmentalization (NCC) in donor fibroblasts and corresponding iNs and found that reduced RanBP17 impaired NCC in young cells, while iPSC rejuvenation restored NCC in aged cells. These results show that iNs retain important aging-related signatures, thus allowing modeling of the aging process in vitro, and they identify impaired NCC as an important factor in human aging.

摘要

衰老 是 许多 人类 疾病 的 主要 风险 因素,而 在 体外 生成 人类 神经元 是 一种 用于 模拟 与 衰老 相关 的 脑部 疾病 的 有吸引力 的 方法。然而,在 分化 的 人类 神经元 中 模拟 衰老 已 被 证明 具有挑战性。我们 通过 基于 iPSC 的 重编程 和 分化 或 直接 转化 为 诱导 神经元(iN),从 广泛 年龄范围 的 人类 供体 中 生成 神经元。虽然 iPSC 和 衍生 的 神经元 没有 保留 与 衰老 相关 的 基因 特征,但 iN 显示出 年龄特异性 的 转录 谱,并揭示 了 核 转运 受体 RanBP17 与 年龄相关 的 减少。我们 在 供体 成纤维细胞 和 相应 的 iN 中 检测到 核质 区室化(NCC)的 年龄依赖性 丧失,并发现 RanBP17 的 减少 损害 了 年轻 细胞 中的 NCC,而 iPSC 年轻化 恢复 了 衰老 细胞 中的 NCC。这些 结果 表明,iN 保留 了 重要 的 与 衰老 相关 的 特征,从而 允许 在 体外 模拟 衰老 过程,并且 它们 将 受损 的 NCC 确定 为 人类 衰老 中的 一个 重要 因素。

相似文献

1
Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects.
Cell Stem Cell. 2015 Dec 3;17(6):705-718. doi: 10.1016/j.stem.2015.09.001. Epub 2015 Oct 8.
2
Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile.
Cell Rep. 2018 May 29;23(9):2550-2558. doi: 10.1016/j.celrep.2018.04.105.
3
Next-generation disease modeling with direct conversion: a new path to old neurons.
FEBS Lett. 2019 Dec;593(23):3316-3337. doi: 10.1002/1873-3468.13678. Epub 2019 Nov 26.
4
Enhanced Rejuvenation in Induced Pluripotent Stem Cell-Derived Neurons Compared with Directly Converted Neurons from an Aged Mouse.
Stem Cells Dev. 2015 Dec 1;24(23):2767-77. doi: 10.1089/scd.2015.0137. Epub 2015 Aug 28.
6
Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells.
Stem Cell Res. 2015 Jul;15(1):254-62. doi: 10.1016/j.scr.2015.06.001. Epub 2015 Jun 11.
7
Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons.
Front Mol Neurosci. 2017 Nov 2;10:359. doi: 10.3389/fnmol.2017.00359. eCollection 2017.
8
Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases.
Annu Rev Genet. 2018 Nov 23;52:271-293. doi: 10.1146/annurev-genet-120417-031534. Epub 2018 Sep 12.
9
Transdifferentiation of human adult peripheral blood T cells into neurons.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6470-6475. doi: 10.1073/pnas.1720273115. Epub 2018 Jun 4.

引用本文的文献

1
Cellular Models of Aging and Senescence.
Cells. 2025 Aug 18;14(16):1278. doi: 10.3390/cells14161278.
2
Alpha-lipoic acid supplementation improves pathological alterations in cellular models of Friedreich ataxia.
Orphanet J Rare Dis. 2025 Aug 23;20(1):453. doi: 10.1186/s13023-025-03990-z.
3
Low-frequency genetic variants in GAK enhance Golgi function and protect against Parkinson's disease.
medRxiv. 2025 Aug 15:2025.08.13.25333123. doi: 10.1101/2025.08.13.25333123.
4
RNA triggers chronic stress during neuronal aging.
bioRxiv. 2025 Aug 5:2025.08.04.668575. doi: 10.1101/2025.08.04.668575.
5
The complex web of membrane contact sites in brain aging and neurodegeneration.
Cell Mol Life Sci. 2025 Aug 8;82(1):301. doi: 10.1007/s00018-025-05830-6.
8
PTBP1 Depletion in Mature Astrocytes Reveals Distinct Splicing Alterations Without Neuronal Features.
bioRxiv. 2025 Jun 3:2025.05.30.657115. doi: 10.1101/2025.05.30.657115.
10
Navigating the neuronal recycling bin: Another look at huntingtin in coordinating autophagy.
Autophagy Rep. 2025 Jun 2;4(1):2472450. doi: 10.1080/27694127.2025.2472450. eCollection 2025.

本文引用的文献

1
Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells.
Stem Cell Reports. 2014 Sep 9;3(3):414-22. doi: 10.1016/j.stemcr.2014.07.003. Epub 2014 Aug 14.
3
HIV-1 Vpr-a still "enigmatic multitasker".
Front Microbiol. 2014 Mar 31;5:127. doi: 10.3389/fmicb.2014.00127. eCollection 2014.
4
REST and stress resistance in ageing and Alzheimer's disease.
Nature. 2014 Mar 27;507(7493):448-54. doi: 10.1038/nature13163. Epub 2014 Mar 19.
5
Progeria: a paradigm for translational medicine.
Cell. 2014 Jan 30;156(3):400-7. doi: 10.1016/j.cell.2013.12.028.
6
APP processing in human pluripotent stem cell-derived neurons is resistant to NSAID-based γ-secretase modulation.
Stem Cell Reports. 2013 Dec 5;1(6):491-8. doi: 10.1016/j.stemcr.2013.10.011. eCollection 2013.
7
Human iPSC-based modeling of late-onset disease via progerin-induced aging.
Cell Stem Cell. 2013 Dec 5;13(6):691-705. doi: 10.1016/j.stem.2013.11.006.
8
Injury-induced HDAC5 nuclear export is essential for axon regeneration.
Cell. 2013 Nov 7;155(4):894-908. doi: 10.1016/j.cell.2013.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验