Bu Xiangwei, Wu Xiaoyan, Zhu Fujing, Huang Jiaqi, Ma Zhen, Zhang Rui
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
ISA Trans. 2015 Nov;59:149-59. doi: 10.1016/j.isatra.2015.09.007. Epub 2015 Oct 9.
A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.
针对具有参数不确定性的柔性吸气式高超声速飞行器(FAHV)纵向动力学模型,提出了一种具有未知初始误差的新型规定性能神经控制器。与传统规定性能控制(PPC)要求准确知道初始误差不同,本文通过利用一种新的性能函数来研究无准确初始误差的跟踪控制。采用神经反步和最小学习参数(MLP)相结合的技术来探索一种规定性能控制器,该控制器能对速度和高度参考轨迹进行鲁棒跟踪。其亮点在于速度和高度跟踪误差的瞬态性能令人满意,且神经逼近的计算量较低。最后,来自非线性FAHV模型的数值仿真结果证明了所提策略的有效性。