Suppr超能文献

使用集成的 2D 视图和卷积神经网络进行计算机断层扫描中肺周边结节的自动分类。

Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box.

机构信息

Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

University Medical Center, Utrecht, The Netherlands.

出版信息

Med Image Anal. 2015 Dec;26(1):195-202. doi: 10.1016/j.media.2015.08.001. Epub 2015 Sep 8.

Abstract

In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is trained to label the detected nodule. The classification of the nodule in 3D is formulated as an ensemble of classifiers trained to recognize PFNs based on 2D views of the nodule. In order to describe nodule morphology in 2D views, we use the output of a pre-trained convolutional neural network known as OverFeat. We compare our approach with a recently presented descriptor of pulmonary nodule morphology, namely Bag of Frequencies, and illustrate the advantages offered by the two strategies, achieving performance of AUC = 0.868, which is close to the one of human experts.

摘要

在本文中,我们解决了肺部肺裂周围结节(PFN)自动分类的问题。该分类问题被表述为一种机器学习方法,其中检测到的结节候选物被分类为 PFN 或非 PFN。使用监督学习,其中训练分类器来标记检测到的结节。基于结节的二维视图,对结节的三维分类被公式化为一组分类器的集合,以识别 PFN。为了在二维视图中描述结节形态,我们使用了一种称为 OverFeat 的预训练卷积神经网络的输出。我们将我们的方法与最近提出的肺部结节形态描述符 Bag of Frequencies 进行了比较,并说明了两种策略提供的优势,实现了 AUC=0.868 的性能,接近人类专家的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验