Suppr超能文献

一种用于基于超声的应变弹性成像的耦合子样本位移估计方法。

A coupled subsample displacement estimation method for ultrasound-based strain elastography.

作者信息

Jiang Jingfeng, Hall Timothy J

机构信息

Biomedical Engineering Department College of Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA. Medical Physics Department University of Wisconsin-Madison School of Medicine and Public Health, 111 Highland Ave #1005, Madison, WI 53705, USA.

出版信息

Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.

Abstract

Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for several clinical applications such as shear strain imaging, modulus reconstruction and temperature imaging, where a full description of the two or three-dimensional (2D/3D) deformation field is required. In this study we propose an improved speckle tracking algorithm where axial and lateral motion estimations are simultaneously performed to enhance motion tracking accuracy. More specifically, using conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the peak correlation between two segments of the pre- and post-deformation ultrasound radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the correlation function that corresponds to the unknown (sub-sample) motion vector between these two segments of echo data. This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results show that the method improves the accuracy of both lateral and axial tracking. Such improvements are more significant when the deformation is small or along the lateral direction. Results from the tissue-mimicking phantom study are consistent with findings observed in computer simulations. Using in vivo breast lesion data we found that, compared to the 2D quadratic subsample displacement estimation methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated that this conceptually and computationally simple method could improve the image quality of ultrasound-based strain elastography with current clinical equipment.

摘要

对于诸如剪切应变成像、模量重建和温度成像等多种临床应用而言,获取沿轴向(平行于声束)和横向(垂直于声束)方向的精确位移估计是一项重要任务,这些应用需要对二维或三维(2D/3D)变形场进行全面描述。在本研究中,我们提出了一种改进的散斑跟踪算法,该算法同时进行轴向和横向运动估计,以提高运动跟踪精度。更具体地说,利用传统超声回波数据,该算法首先在变形前和变形后超声射频回波数据的两段之间的峰值相关性附近找到一条等轮廓线。然后,该算法试图找到与这两段回波数据之间未知(亚采样)运动矢量相对应的相关函数等轮廓线的中心。该算法已通过计算机模拟数据、组织模拟体模研究和体内乳腺病变数据进行了测试。计算机模拟结果表明,该方法提高了横向和轴向跟踪的精度。当变形较小或沿横向方向时,这种改进更为显著。组织模拟体模研究的结果与计算机模拟中观察到的结果一致。利用体内乳腺病变数据我们发现,与二维二次亚采样位移估计方法相比,在多压缩技术中,对于大变形(高达5%的帧间变形和15%的局部应变),可以获得更高质量的轴向应变和剪切应变图像(例如,剪切应变图像的对比度噪声比提高了18.6%)。我们的初步结果表明,这种概念和计算上都很简单的方法可以利用当前临床设备提高基于超声的应变弹性成像的图像质量。

相似文献

1
A coupled subsample displacement estimation method for ultrasound-based strain elastography.
Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.
2
A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography.
Ultrason Imaging. 2015 Oct;37(4):277-93. doi: 10.1177/0161734614561128. Epub 2014 Nov 30.
3
A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
Med Phys. 2023 Apr;50(4):2176-2194. doi: 10.1002/mp.16110. Epub 2022 Dec 8.
4
Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
Phys Med Biol. 2020 Mar 19;65(6):065008. doi: 10.1088/1361-6560/ab735f.
5
Calculation of strain images of a breast-mimicking phantom from 3D CT image data.
Med Phys. 2012 Sep;39(9):5469-78. doi: 10.1118/1.4742902.
6
An approach to unbiased subsample interpolation for motion tracking.
Ultrason Imaging. 2013 Apr;35(2):76-87. doi: 10.1177/0161734613476176.
7
Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1713-28. doi: 10.1109/TUFFC.2012.2376.
8
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
9
3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions.
Med Image Anal. 2009 Feb;13(1):116-27. doi: 10.1016/j.media.2008.07.003. Epub 2008 Jul 30.
10

引用本文的文献

1
Open-chest cardiac ultrasound-mediated imaging with a vacuum coupler.
Med Phys. 2025 Feb;52(2):880-888. doi: 10.1002/mp.17511. Epub 2024 Nov 15.
2
Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue.
Nat Biomed Eng. 2023 Oct;7(10):1321-1334. doi: 10.1038/s41551-023-01038-w. Epub 2023 May 1.
4
Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and Results.
IEEE Open J Ultrason Ferroelectr Freq Control. 2021;1:21-36. doi: 10.1109/OJUFFC.2021.3130021. Epub 2021 Nov 22.
5
Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
Phys Med Biol. 2020 Mar 19;65(6):065008. doi: 10.1088/1361-6560/ab735f.
6
8
Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1708-1722. doi: 10.1109/TUFFC.2019.2928546. Epub 2019 Jul 12.
9
Comparison of Displacement Tracking Algorithms for in Vivo Electrode Displacement Elastography.
Ultrasound Med Biol. 2019 Jan;45(1):218-232. doi: 10.1016/j.ultrasmedbio.2018.09.001. Epub 2018 Oct 11.
10
Dictionary Representations for Electrode Displacement Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2381-2389. doi: 10.1109/TUFFC.2018.2874181. Epub 2018 Oct 5.

本文引用的文献

1
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology.
Ultrasound Med Biol. 2015 May;41(5):1126-47. doi: 10.1016/j.ultrasmedbio.2015.03.009. Epub 2015 Mar 21.
2
Ultrasound elastography using multiple images.
Med Image Anal. 2014 Feb;18(2):314-29. doi: 10.1016/j.media.2013.11.002. Epub 2013 Dec 4.
3
A nonlinear elasticity phantom containing spherical inclusions.
Phys Med Biol. 2012 Aug 7;57(15):4787-804. doi: 10.1088/0031-9155/57/15/4787. Epub 2012 Jul 6.
4
Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis.
IEEE Trans Med Imaging. 2012 Aug;31(8):1628-37. doi: 10.1109/TMI.2012.2201497. Epub 2012 May 30.
5
A fast hybrid algorithm combining regularized motion tracking and predictive search for reducing the occurrence of large displacement errors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):730-6. doi: 10.1109/TUFFC.2011.1865.
6
Sub-sample displacement estimation from digitized ultrasound RF signals using multi-dimensional polynomial fitting of the cross-correlation function.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2403-20. doi: 10.1109/TUFFC.2010.1708.
8
Elastic nonlinearity imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1967-70. doi: 10.1109/IEMBS.2009.5333442.
9
Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility.
Phys Med Biol. 2009 Mar 7;54(5):1191-207. doi: 10.1088/0031-9155/54/5/006. Epub 2009 Jan 30.
10
MUlti-Dimensional Spline-Based Estimator (MUSE) for motion estimation: algorithm development and initial results.
Ann Biomed Eng. 2008 Dec;36(12):1942-60. doi: 10.1007/s10439-008-9564-2. Epub 2008 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验