Suppr超能文献

云端可扩展且经济高效的二代测序基因分型技术

Scalable and cost-effective NGS genotyping in the cloud.

作者信息

Souilmi Yassine, Lancaster Alex K, Jung Jae-Yoon, Rizzo Ettore, Hawkins Jared B, Powles Ryan, Amzazi Saaïd, Ghazal Hassan, Tonellato Peter J, Wall Dennis P

机构信息

Department of Biomedical Informatics, Harvard Medical School 10 Shattuck Street, Boston, MA, 02115, USA.

Department of Biology, Mohamed Vth University, 4 Ibn Battouta Avenue, B.P: 1014RP, Rabat, Morocco.

出版信息

BMC Med Genomics. 2015 Oct 15;8:64. doi: 10.1186/s12920-015-0134-9.

Abstract

BACKGROUND

While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10's of dollars.

RESULTS

We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets.

CONCLUSIONS

Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.

摘要

背景

尽管近年来新一代测序(NGS)成本大幅下降,但计算成本和复杂性仍是NGS在常规临床护理中应用的重大障碍。在数小时的时间窗口内,以数十美元的经济规模将可靠且常规的全基因组测序数据准确转化为具有医学可操作性的报告之前,NGS的临床潜力无法实现。

结果

我们朝着应对这一挑战迈出了一步,通过使用支持云的工作流程管理系统COSMOS来开发GenomeKey,这是一种NGS全基因组分析工作流程。COSMOS实施复杂的工作流程,以最佳方式利用高性能计算集群。我们在此表明,通过COSMOS在亚马逊网络服务(AWS)上实施的GenomeKey,能够对公共基准测试数据集和大规模异构临床NGS数据集进行快速、可扩展且具有成本效益的分析。

结论

我们的系统基准测试揭示了全基因组分析优化和工作流程管理的临床周转方面的重要新见解和考量因素,包括个体基因组的战略分批处理和高效的集群资源配置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3995/4608296/5058a5bc5af6/12920_2015_134_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验