Suppr超能文献

氧化石墨烯纳米片对肺表面活性物质膜超微结构和生物物理性质的影响。

Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film.

作者信息

Hu Qinglin, Jiao Bao, Shi Xinghua, Valle Russell P, Zuo Yi Y, Hu Guoqing

机构信息

State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.

出版信息

Nanoscale. 2015 Nov 21;7(43):18025-9. doi: 10.1039/c5nr05401j.

Abstract

Graphene oxide (GO) is the most common derivative of graphene and has been used in a large range of biomedical applications. Despite considerable progress in understanding its cytotoxicity, its potential inhalation toxicity is still largely unknown. As the pulmonary surfactant (PS) film is the first line of host defense, interaction with the PS film determines the fate of the inhaled nanomaterials and their potential toxicity. Using a coarse-grained molecular dynamics model, we reported, for the first time, a novel mechanism of toxicity caused by the inhaled GO nanosheets. Upon deposition, the GO nanosheets induce pores in the PS film and thus have adverse effects on the ultrastructure and biophysical properties of the PS film. Notably, the pores induced by GO nanosheets result in increasing the compressibility of the PS film, which is an important indication of surfactant inhibition. In vitro experiments have also been conducted to study the interactions between GO and animal-derived natural PS films, qualitatively confirming the simulation results.

摘要

氧化石墨烯(GO)是石墨烯最常见的衍生物,已被广泛应用于众多生物医学领域。尽管在了解其细胞毒性方面取得了显著进展,但其潜在的吸入毒性仍 largely unknown。由于肺表面活性剂(PS)膜是宿主防御的第一道防线,与PS膜的相互作用决定了吸入纳米材料的命运及其潜在毒性。我们使用粗粒度分子动力学模型首次报道了吸入的GO纳米片引起毒性的新机制。沉积后,GO纳米片在PS膜中诱导形成孔,从而对PS膜的超微结构和生物物理性质产生不利影响。值得注意的是,GO纳米片诱导的孔导致PS膜的压缩性增加,这是表面活性剂抑制的一个重要指标。还进行了体外实验来研究GO与动物源性天然PS膜之间的相互作用,定性地证实了模拟结果。

相似文献

2
Biophysical impact of lubricating base oil aerosols on natural pulmonary surfactant film.
J Hazard Mater. 2024 Sep 5;476:135248. doi: 10.1016/j.jhazmat.2024.135248. Epub 2024 Jul 17.
3
Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.
ACS Nano. 2011 Aug 23;5(8):6410-6. doi: 10.1021/nn2015997. Epub 2011 Jul 20.
6
Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition.
Environ Sci Technol. 2018 Aug 7;52(15):8920-8929. doi: 10.1021/acs.est.8b02976. Epub 2018 Jul 23.
8
Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton.
Small. 2017 Jan;13(3). doi: 10.1002/smll.201602133. Epub 2016 Oct 20.
10
Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9793-E9801. doi: 10.1073/pnas.1710996114. Epub 2017 Oct 26.

引用本文的文献

1
Molecular basis of transport of surface functionalised gold nanoparticles to pulmonary surfactant.
RSC Adv. 2022 Jun 17;12(28):18012-18021. doi: 10.1039/d2ra01892f. eCollection 2022 Jun 14.
2
Prospective pathways of green graphene-based lab-on-chip devices: the pursuit toward sustainability.
Mikrochim Acta. 2022 Apr 5;189(5):177. doi: 10.1007/s00604-022-05286-6.
4
Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review.
Nanomaterials (Basel). 2021 Oct 28;11(11):2889. doi: 10.3390/nano11112889.
5
Recent Progress in Modified Polymer-Based PPE in Fight Against COVID-19 and Beyond.
ACS Omega. 2021 Oct 21;6(43):28463-28470. doi: 10.1021/acsomega.1c04754. eCollection 2021 Nov 2.
6
Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of and Studies.
Biomed Res Int. 2021 Jun 10;2021:5518999. doi: 10.1155/2021/5518999. eCollection 2021.
7
Nanoparticle-Based Devices in the Control of Antibiotic Resistant Bacteria.
Front Microbiol. 2020 Nov 25;11:563821. doi: 10.3389/fmicb.2020.563821. eCollection 2020.
9
Toxicology data of graphene-family nanomaterials: an update.
Arch Toxicol. 2020 Jun;94(6):1915-1939. doi: 10.1007/s00204-020-02717-2. Epub 2020 Apr 2.
10
The L Phase of Pulmonary Surfactant.
Langmuir. 2018 Jun 5;34(22):6601-6611. doi: 10.1021/acs.langmuir.8b00460. Epub 2018 May 21.

本文引用的文献

1
Shape affects the interactions of nanoparticles with pulmonary surfactant.
Sci China Mater. 2015 Jan;58(1):28-37. doi: 10.1007/s40843-014-0018-5. Epub 2015 Jan 20.
2
Biocompatibility of Graphene Oxide.
Nanoscale Res Lett. 2011 Dec;6(1):8. doi: 10.1007/s11671-010-9751-6. Epub 2010 Aug 21.
4
Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.
ACS Nano. 2015 May 26;9(5):5413-21. doi: 10.1021/acsnano.5b01181. Epub 2015 May 6.
6
Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets.
Nanoscale. 2014 Sep 21;6(18):10792-7. doi: 10.1039/c4nr03608e. Epub 2014 Aug 8.
7
Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets.
Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6997-7000. doi: 10.1002/anie.201309931. Epub 2014 May 18.
9
Nanotoxicity of graphene and graphene oxide.
Chem Res Toxicol. 2014 Feb 17;27(2):159-68. doi: 10.1021/tx400385x. Epub 2014 Jan 14.
10
Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer.
Small. 2014 Mar 26;10(6):1069-75. doi: 10.1002/smll.201300315. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验