Karabacak Mehmet, Calisir Zuhre, Kurt Mustafa, Kose Etem, Atac Ahmet
Department of Mechatronics Engineering, H.F.T. Technology Faculty, Celal Bayar University, Turgutlu, Manisa, Turkey.
Department of Physics, Ahi Evran University, Kırsehir, Turkey.
Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 15;153:754-70. doi: 10.1016/j.saa.2015.09.007. Epub 2015 Sep 21.
In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules.
在本研究中,对6-氯烟酸乙酯(E-6-ClN)分子在固相下分别于4000 - 400 cm⁻¹区域(傅里叶变换红外光谱,FT-IR)和3500 - 100 cm⁻¹区域(傅里叶变换拉曼光谱和色散拉曼光谱)进行了记录。¹H和¹³C核磁共振(NMR)光谱在二甲基亚砜(DMSO)溶液中进行记录。通过密度泛函理论(DFT)的B3LYP方法,采用6-311++G(d,p)基组计算,获得了该分子两种可能异构体(S1和S2)的结构和光谱数据。对分子的几何结构进行了完全优化,计算了振动光谱,并根据振动模式的势能分布(PED)对基本振动进行了归属。¹H和¹³C NMR化学位移通过使用规范不变原子轨道(GIAO)方法进行计算。通过含时密度泛函理论(TD-DFT)计算了电子性质,如激发能、振子强度、波长、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)能量。给出了E-6-ClN分子的总态密度和分态密度以及重叠布居态密度图分析。此外,还进行了前线分子轨道(FMO)、分子静电势和热力学特征的计算。除此之外,还对分子的约化密度梯度进行了计算和讨论。作为结论,将计算结果与标题化合物的实验光谱进行了比较。计算结果用于模拟分子的振动光谱,与观测光谱显示出极好的一致性。理论和初步结果将为我们提供该分子结构和物理化学性质的详细描述。进行了自然键轨道分析,以获取更多关于电荷离域产生的分子稳定性信息,并揭示分子内电荷转移的信息。