Dickinson Paul, Smith Claire L, Forster Thorsten, Craigon Marie, Ross Alan J, Khondoker Mizan R, Ivens Alasdair, Lynn David J, Orme Judith, Jackson Allan, Lacaze Paul, Flanagan Katie L, Stenson Benjamin J, Ghazal Peter
Division of Infection and Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK ; SynthSys-Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, UK.
Neonatal Unit, Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
Genom Data. 2014 Nov 15;3:41-8. doi: 10.1016/j.gdata.2014.11.003. eCollection 2015 Mar.
Neonatal infection remains a primary cause of infant morbidity and mortality worldwide and yet our understanding of how human neonates respond to infection remains incomplete. Changes in host gene expression in response to infection may occur in any part of the body, with the continuous interaction between blood and tissues allowing blood cells to act as biosensors for the changes. In this study we have used whole blood transcriptome profiling to systematically identify signatures and the pathway biology underlying the pathogenesis of neonatal infection. Blood samples were collected from neonates at the first clinical signs of suspected sepsis alongside age matched healthy control subjects. Here we report a detailed description of the study design, including clinical data collected, experimental methods used and data analysis workflows and which correspond with data in Gene Expression Omnibus (GEO) data sets (GSE25504). Our data set has allowed identification of a patient invariant 52-gene classifier that predicts bacterial infection with high accuracy and lays the foundation for advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.
新生儿感染仍然是全球婴儿发病和死亡的主要原因,然而我们对人类新生儿如何应对感染的理解仍不完整。机体任何部位都可能发生宿主基因表达对感染的响应变化,血液与组织之间的持续相互作用使血细胞能够作为这些变化的生物传感器。在本研究中,我们利用全血转录组分析来系统地识别新生儿感染发病机制背后的特征和通路生物学。在疑似败血症的首个临床症状出现时,从新生儿以及年龄匹配的健康对照受试者采集血样。在此,我们报告了对研究设计的详细描述,包括所收集的临床数据、所使用的实验方法和数据分析流程,这些均与基因表达综合数据库(GEO)数据集(GSE25504)中的数据相对应。我们的数据组已使得能够识别出一个患者不变的52基因分类器,该分类器能够高度准确地预测细菌感染,并为推进新生儿败血症的诊断、预后和治疗策略奠定了基础。