Suppr超能文献

温度对离子电流及单链DNA通过纳米孔转运的影响

Temperature Effect on Ionic Current and ssDNA Transport through Nanopores.

作者信息

Payet Linda, Martinho Marlène, Merstorf Céline, Pastoriza-Gallego Manuela, Pelta Juan, Viasnoff Virgile, Auvray Loïc, Muthukumar Murugappan, Mathé Jérôme

机构信息

LAMBE, équipe MPI, CNRS-UMR 8587, Université d'Évry, Évry, France.

LAMBE, équipe MPI, CNRS-UMR 8587, Université de Cergy-Pontoise, Cergy-Pontoise, France.

出版信息

Biophys J. 2015 Oct 20;109(8):1600-7. doi: 10.1016/j.bpj.2015.08.043.

Abstract

We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each toxin as a function of temperature show that the entry barrier is ∼15 kBT and the translocation barrier is ∼35 kBT, although the electrical force in the latter step is much stronger. Resolution of this fact, using a theoretical model, reveals that the attraction between DNA and the charges inside the barrel of the pore is the most dominant factor in determining the translocation speed and not merely the driving electrochemical potential gradient.

摘要

我们研究了静电相互作用在核酸和离子通过纳米孔传输过程中的作用。迄今为止,DNA通过纳米孔的过程被推测涉及一个进入的自由能屏障,随后是一个下坡易位过程,其中驱动电压加速聚合物移动。我们通过使用两种毒素,即α-溶血素和气溶素,来测试这一推测的有效性,这两种毒素在形状、大小和电荷方面存在差异。每种毒素中特征时间尺度作为温度的函数表明,进入屏障约为15kBT,易位屏障约为35kBT,尽管后一步中的电力要强得多。使用理论模型对这一事实的解析表明,DNA与孔腔内电荷之间的吸引力是决定易位速度的最主要因素,而不仅仅是驱动电化学势梯度。

相似文献

1
Temperature Effect on Ionic Current and ssDNA Transport through Nanopores.
Biophys J. 2015 Oct 20;109(8):1600-7. doi: 10.1016/j.bpj.2015.08.043.
2
Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
J Phys Chem B. 2020 Mar 5;124(9):1611-1618. doi: 10.1021/acs.jpcb.9b10702. Epub 2020 Feb 19.
4
Translocation of Precision Polymers through Biological Nanopores.
Macromol Rapid Commun. 2017 Dec;38(24). doi: 10.1002/marc.201700680. Epub 2017 Nov 16.
5
Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
Biophys J. 2017 Oct 17;113(8):1664-1672. doi: 10.1016/j.bpj.2017.08.045.
7
Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19720-5. doi: 10.1073/pnas.0808296105. Epub 2008 Dec 5.
8
Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores.
Eur Phys J E Soft Matter. 2018 Jun 18;41(6):77. doi: 10.1140/epje/i2018-11687-6.
10
Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores.
Nat Commun. 2019 Oct 29;10(1):4918. doi: 10.1038/s41467-019-12690-9.

引用本文的文献

3
Polymers in Physics, Chemistry and Biology: Behavior of Linear Polymers in Fractal Structures.
Polymers (Basel). 2024 Dec 2;16(23):3400. doi: 10.3390/polym16233400.
5
Engineering Biological Nanopore Approaches toward Protein Sequencing.
ACS Nano. 2023 Sep 12;17(17):16369-16395. doi: 10.1021/acsnano.3c05628. Epub 2023 Jul 25.
6
Translocation of Hydrophobic Polyelectrolytes under Electrical Field: Molecular Dynamics Study.
Polymers (Basel). 2023 May 31;15(11):2550. doi: 10.3390/polym15112550.
7
Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges.
Int J Mol Sci. 2023 Mar 24;24(7):6153. doi: 10.3390/ijms24076153.
9
Biological nanopores for single-molecule sensing.
iScience. 2022 Mar 23;25(4):104145. doi: 10.1016/j.isci.2022.104145. eCollection 2022 Apr 15.
10
Translocation, Rejection and Trapping of Polyampholytes.
Polymers (Basel). 2022 Feb 18;14(4):797. doi: 10.3390/polym14040797.

本文引用的文献

1
A dc Method for the Absolute Determination of Conductivities of the Primary Standard KCl Solutions from 0 °C to 50 °C.
J Res Natl Inst Stand Technol. 1994 May-Jun;99(3):241-246. doi: 10.6028/jres.099.019.
2
Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level.
J Phys Chem Lett. 2013 Jan 3;4(1):78-82. doi: 10.1021/jz301790h. Epub 2012 Dec 17.
3
Reading nanopore clocks in single-molecule electrophoresis experiments.
Biophys J. 2015 Jan 6;108(1):17-9. doi: 10.1016/j.bpj.2014.11.3452.
4
Communication: Charge, diffusion, and mobility of proteins through nanopores.
J Chem Phys. 2014 Aug 28;141(8):081104. doi: 10.1063/1.4894401.
5
Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
Nat Chem Biol. 2013 Oct;9(10):623-9. doi: 10.1038/nchembio.1312. Epub 2013 Aug 4.
6
Disentangling steric and electrostatic factors in nanoscale transport through confined space.
Nano Lett. 2013 Aug 14;13(8):3890-6. doi: 10.1021/nl401968r. Epub 2013 Jul 10.
7
pH tuning of DNA translocation time through organically functionalized nanopores.
ACS Nano. 2013 Feb 26;7(2):1408-14. doi: 10.1021/nn3051677. Epub 2012 Dec 31.
8
DNA unzipping and protein unfolding using nanopores.
Methods Mol Biol. 2012;870:55-75. doi: 10.1007/978-1-61779-773-6_4.
9
Thermal unfolding of proteins probed at the single molecule level using nanopores.
Anal Chem. 2012 May 1;84(9):4071-6. doi: 10.1021/ac300129e. Epub 2012 Apr 18.
10
Transport of long neutral polymers in the semidilute regime through a protein nanopore.
Phys Rev Lett. 2012 Feb 24;108(8):088104. doi: 10.1103/PhysRevLett.108.088104. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验