Payet Linda, Martinho Marlène, Merstorf Céline, Pastoriza-Gallego Manuela, Pelta Juan, Viasnoff Virgile, Auvray Loïc, Muthukumar Murugappan, Mathé Jérôme
LAMBE, équipe MPI, CNRS-UMR 8587, Université d'Évry, Évry, France.
LAMBE, équipe MPI, CNRS-UMR 8587, Université de Cergy-Pontoise, Cergy-Pontoise, France.
Biophys J. 2015 Oct 20;109(8):1600-7. doi: 10.1016/j.bpj.2015.08.043.
We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each toxin as a function of temperature show that the entry barrier is ∼15 kBT and the translocation barrier is ∼35 kBT, although the electrical force in the latter step is much stronger. Resolution of this fact, using a theoretical model, reveals that the attraction between DNA and the charges inside the barrel of the pore is the most dominant factor in determining the translocation speed and not merely the driving electrochemical potential gradient.
我们研究了静电相互作用在核酸和离子通过纳米孔传输过程中的作用。迄今为止,DNA通过纳米孔的过程被推测涉及一个进入的自由能屏障,随后是一个下坡易位过程,其中驱动电压加速聚合物移动。我们通过使用两种毒素,即α-溶血素和气溶素,来测试这一推测的有效性,这两种毒素在形状、大小和电荷方面存在差异。每种毒素中特征时间尺度作为温度的函数表明,进入屏障约为15kBT,易位屏障约为35kBT,尽管后一步中的电力要强得多。使用理论模型对这一事实的解析表明,DNA与孔腔内电荷之间的吸引力是决定易位速度的最主要因素,而不仅仅是驱动电化学势梯度。