Inokuchi Yoshiya, Ebata Takayuki, Rizzo Thomas R
Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan.
Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Lausanne CH-1015, Switzerland.
J Phys Chem A. 2015 Nov 12;119(45):11113-8. doi: 10.1021/acs.jpca.5b07033. Epub 2015 Nov 2.
The H2O(+) radical ion, produced in an electrospray ion source via charge transfer from Eu(3+), is encapsulated in benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6). We measure UV photodissociation (UVPD) spectra of the (H2O·B15C5)(+) and (H2O·B18C6)(+) complexes in a cold, 22-pole ion trap. These complexes show sharp vibronic bands in the 35 700-37 600 cm(-1) region, similar to the case of neutral B15C5 or B18C6. These results indicate that the positive charge in the complexes is localized on H2O, giving the forms H2O(+)·B15C5 and H2O(+)·B18C6, in spite of the fact that the ionization energy of B15C5 and B18C6 is lower than that of H2O. The formation of the H2O(+) complexes and the suppression of the H3O(+) production through the reaction of H2O(+) and H2O can be attributed to the encapsulation of hydrated Eu(3+) clusters by B15C5 and B18C6. On the contrary, the main fragment ions subsequent to the UV excitation of these complexes are B15C5(+) and B18C6(+) radical ions; the charge transfer occurs from H2O(+) to B15C5 and B18C6 after the UV excitation. The position of the band origin for the H2O(+)·B18C6 complex (36323 cm(-1)) is almost the same as that for Rb(+)·B18C6 (36315 cm(-1)); the strength of the intermolecular interaction of H2O(+) with B18C6 is similar to that of Rb(+). The spectral features of the H2O(+)·B15C5 complex also resemble those of the Rb(+)·B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region. Four conformers are found for the H2O(+)·B15C5 complex, but there is one dominant form for the H2O(+)·B18C6 ion. This study demonstrates the production of radical ions by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase.
通过从Eu(3+)进行电荷转移在电喷雾离子源中产生的H2O(+)自由基离子被封装在苯并 - 15 - 冠 - 5(B15C5)或苯并 - 18 - 冠 - 6(B18C6)中。我们在一个冷的22极离子阱中测量了(H2O·B15C5)(+)和(H2O·B18C6)(+)配合物的紫外光解离(UVPD)光谱。这些配合物在35700 - 37600 cm(-1)区域显示出尖锐的振转带,类似于中性B15C5或B18C6的情况。这些结果表明,尽管B15C5和B18C6的电离能低于H2O,但配合物中的正电荷定域在H2O上,形成H2O(+)·B15C5和H2O(+)·B18C6的形式。H2O(+)配合物的形成以及通过H2O(+)与H2O反应对H3O(+)产生的抑制可归因于B15C5和B18C6对水合Eu(3+)簇的封装。相反,这些配合物在紫外激发后的主要碎片离子是B15C5(+)和B18C6(+)自由基离子;紫外激发后电荷从H2O(+)转移到B15C5和B18C6。H2O(+)·B18C6配合物的带起源位置(36323 cm(-1))与Rb(+)·B18C6的带起源位置(36315 cm(-1))几乎相同;H2O(+)与B18C6的分子间相互作用强度与Rb(+)的相似。H2O(+)·B15C5配合物的光谱特征也类似于Rb(+)·B15C5离子的光谱特征。我们在CH和OH伸缩区域测量了这些配合物的红外 - 紫外光谱。发现H2O(+)·B15C5配合物有四种构象,但H2O(+)·B18C6离子有一种主要形式。这项研究展示了通过多价金属离子的电荷转移产生自由基离子、它们被主体分子封装以及在气相中通过冷紫外光谱对其构象进行单独检测。