Åqvist Johan, Kamerlin Shina C L
Dept. of Cell &Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
Sci Rep. 2015 Oct 26;5:15817. doi: 10.1038/srep15817.
Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very large positive activation entropy. This entropy term (TΔS(‡)) amounts to more than 7 kcal/mol at 25 °C. It is further found to be characteristic of the reaction mechanism utilized by the translational, but not other, GTPases and it enables these enzymes to attain hydrolysis rates exceeding 500 s(-1). This entropy driven mechanism likely reflects the very high selection pressure on the speed of protein synthesis, which drives the rate of each individual GTPase towards maximal turnover rate of the whole translation cycle.
核糖体上的蛋白质合成在mRNA翻译循环的几个关键步骤中涉及GTP的水解。这些步骤由翻译GTP酶催化,其中延伸因子Tu(EF-Tu)是已知最快的GTP酶。在这里,我们使用广泛的计算机模拟来探索其在核糖体上显著高催化速率的起源,并表明这是由非常大的正活化熵实现的。在25°C时,这个熵项(TΔS(‡))超过7千卡/摩尔。进一步发现,这是翻译GTP酶而非其他GTP酶所利用的反应机制的特征,并且它使这些酶能够达到超过500 s(-1)的水解速率。这种熵驱动机制可能反映了对蛋白质合成速度的极高选择压力,这将每个单独GTP酶的速率推向整个翻译循环的最大周转率。