Li Tong, Piltz Bastian, Podola Björn, Dron Anthony, de Beer Dirk, Melkonian Michael
Botanisches Institut, Universität zu Köln, Köln, 50674, Germany.
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany.
Biotechnol Bioeng. 2016 May;113(5):1046-55. doi: 10.1002/bit.25867. Epub 2015 Nov 20.
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs.
在本研究中,使用微传感器记录了多孔基质光生物反应器(PSBR)中绿藻红皮盐藻人工生物膜内光、氧气、pH值和光合性能的深度分布。生物膜暴露于不同的光照强度(50 - 1000 μmol光子 m(-2) s(-1))和二氧化碳水平(空气中体积分数为0.04 - 5%)下。不同表面辐照度下光合有效辐射的分布呈现出几乎相同的趋势,即:在约250 µm深度处相对快速下降至入射光的5%,随后下降速度减慢。光穿透生物膜的深度比朗伯 - 比尔定律预测的更深,这可能归因于光的前向散射,从而提高了整体光利用率。氧气浓度分布在50至150 µm深度之间出现最大值,这取决于入射光强度。在生物膜表面观察到非常快速的气体交换。在1000 μmol光子 m(-2) s(-1)和5%补充二氧化碳条件下,测得的最高氧气浓度为3.2 mM。光合生产力随光照强度和/或二氧化碳浓度增加,且在生物膜表面始终最高;气相中升高的二氧化碳浓度对光合作用的刺激作用在较高光照强度下增强。溶解无机碳浓度分布表明,溶解游离二氧化碳的可用性对光合生产力的影响最大。结果表明,暗呼吸可以解释此前在这种类型的PSBR中观察到的培养时间内生长速率下降的现象。我们的结果为理解暴露于气相中的人工光合生物膜中环境变量和代谢过程的复杂动态提供了基础,可用于改进PSBR的设计和运行参数。