Suppr超能文献

在大鼠出生后的早期发育过程中,皮质脊髓轴突与支配前臂肌肉的脊髓运动神经元形成直接的突触连接。

Corticospinal axons make direct synaptic connections with spinal motoneurons innervating forearm muscles early during postnatal development in the rat.

作者信息

Maeda Hitoshi, Fukuda Satoshi, Kameda Hiroshi, Murabe Naoyuki, Isoo Noriko, Mizukami Hiroaki, Ozawa Keiya, Sakurai Masaki

机构信息

Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan.

Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan.

出版信息

J Physiol. 2016 Jan 1;594(1):189-205. doi: 10.1113/JP270885. Epub 2015 Dec 13.

Abstract

Direct connections between corticospinal (CS) axons and motoneurons (MNs) appear to be present only in higher primates, where they are essential for discrete movement of the digits. Their presence in adult rodents was once claimed but is now questioned. We report that MNs innervating forearm muscles in infant rats receive monosynaptic input from CS axons, but MNs innervating proximal muscles do not, which is a pattern similar to that in primates. Our experiments were carefully designed to show monosynaptic connections. This entailed selective electrical and optogenetic stimulation of CS axons and recording from MNs identified by retrograde labelling from innervated muscles. Morphological evidence was also obtained for rigorous identification of CS axons and MNs. These connections would be transient and would regress later during development. These results shed light on the development and evolution of direct CS-MN connections, which serve as the basis for dexterity in humans. Recent evidence suggests there is no direct connection between corticospinal (CS) axons and spinal motoneurons (MNs) in adult rodents. We previously showed that CS synapses are present throughout the spinal cord for a time, but are eliminated from the ventral horn during development in rodents. This raises the possibility that CS axons transiently make direct connections with MNs located in the ventral horn of the spinal cord. This was tested in the present study. Using cervical cord slices prepared from rats on postnatal days (P) 7-9, CS axons were stimulated and whole cell recordings were made from MNs retrogradely labelled with fluorescent cholera toxin B subunit (CTB) injected into selected groups of muscles. To selectively activate CS axons, electrical stimulation was carefully limited to the CS tract. In addition we employed optogenetic stimulation after injecting an adeno-associated virus vector encoding channelrhodopsin-2 (ChR2) into the sensorimotor cortex on P0. We were then able to record monosynaptic excitatory postsynaptic currents from MNs innervating forearm muscles, but not from those innervating proximal muscles. We also showed close contacts between CTB-labelled MNs and CS axons labelled through introduction of fluorescent protein-conjugated synaptophysin or the ChR2 expression system. We confirmed that some of these contacts colocalized with postsynaptic density protein 95 in their partner dendrites. It is intriguing from both phylogenetic and ontogenetic viewpoints that direct and putatively transient CS-MN connections were found only on MNs innervating the forearm muscles in infant rats, as this is analogous to the connection pattern seen in adult primates.

摘要

皮质脊髓(CS)轴突与运动神经元(MNs)之间的直接连接似乎仅存在于高等灵长类动物中,对指的精细运动至关重要。曾有人声称在成年啮齿动物中也存在这种连接,但现在受到质疑。我们报告称,支配幼鼠前臂肌肉的运动神经元接受来自皮质脊髓轴突的单突触输入,但支配近端肌肉的运动神经元则不接受,这一模式与灵长类动物相似。我们精心设计实验以展示单突触连接。这需要对皮质脊髓轴突进行选择性电刺激和光遗传学刺激,并从通过对受支配肌肉逆行标记鉴定出的运动神经元进行记录。还获得了形态学证据以严格鉴定皮质脊髓轴突和运动神经元。这些连接是短暂的,在发育后期会退化。这些结果揭示了皮质脊髓 - 运动神经元直接连接的发育和进化,这是人类灵活性的基础。最近的证据表明成年啮齿动物的皮质脊髓(CS)轴突与脊髓运动神经元(MNs)之间不存在直接连接。我们之前表明,皮质脊髓突触在一段时间内存在于整个脊髓中,但在啮齿动物发育过程中从腹角消失。这增加了皮质脊髓轴突与位于脊髓腹角的运动神经元短暂建立直接连接的可能性。本研究对此进行了测试。使用出生后第7 - 9天(P)大鼠制备的颈髓切片,刺激皮质脊髓轴突,并从通过向选定肌肉群注射荧光霍乱毒素B亚基(CTB)逆行标记的运动神经元进行全细胞记录。为了选择性激活皮质脊髓轴突,将电刺激仔细限制在皮质脊髓束。此外,在出生后第0天向感觉运动皮层注射编码通道视紫红质 - 2(ChR2)的腺相关病毒载体后,我们采用了光遗传学刺激。然后我们能够记录到支配前臂肌肉的运动神经元的单突触兴奋性突触后电流,但支配近端肌肉的运动神经元则没有。我们还展示了CTB标记的运动神经元与通过引入荧光蛋白偶联的突触素或ChR2表达系统标记的皮质脊髓轴突之间的紧密接触。我们证实其中一些接触在其伙伴树突中与突触后致密蛋白95共定位。从系统发育和个体发育的角度来看都很有趣的是,仅在幼鼠支配前臂肌肉的运动神经元上发现了直接且可能短暂的皮质脊髓 - 运动神经元连接,因为这类似于成年灵长类动物中看到的连接模式。

相似文献

4
Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets.
J Neurosci. 2015 Jan 21;35(3):1181-91. doi: 10.1523/JNEUROSCI.2842-13.2015.
10
Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse.
Brain Struct Funct. 2013 Jan;218(1):221-38. doi: 10.1007/s00429-012-0396-3. Epub 2012 Feb 24.

引用本文的文献

1
Corticospinal Tract Development, Evolution, and Skilled Movements.
Mov Disord. 2025 Jul;40(7):1221-1232. doi: 10.1002/mds.30199. Epub 2025 Apr 25.
2
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.
3
Amyotrophic lateral sclerosis represents corticomotoneuronal system failure.
Muscle Nerve. 2025 Apr;71(4):499-511. doi: 10.1002/mus.28290. Epub 2024 Nov 7.
4
Betz cells of the primary motor cortex.
J Comp Neurol. 2024 Jan;532(1):e25567. doi: 10.1002/cne.25567.
5
Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans.
Front Neuroanat. 2021 Aug 17;15:693346. doi: 10.3389/fnana.2021.693346. eCollection 2021.
6
Rostro-Caudal Specificity of Corticospinal Tract Projections in Mice.
Cereb Cortex. 2021 Mar 31;31(5):2322-2344. doi: 10.1093/cercor/bhaa338.
8
Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters.
Gene Ther. 2021 Feb;28(1-2):56-74. doi: 10.1038/s41434-020-0169-1. Epub 2020 Jun 23.
9
Reverse engineering human brain evolution using organoid models.
Brain Res. 2020 Feb 15;1729:146582. doi: 10.1016/j.brainres.2019.146582. Epub 2019 Dec 3.

本文引用的文献

1
Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets.
J Neurosci. 2015 Jan 21;35(3):1181-91. doi: 10.1523/JNEUROSCI.2842-13.2015.
2
Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.
Nat Neurosci. 2014 Feb;17(2):269-79. doi: 10.1038/nn.3614. Epub 2013 Dec 15.
3
Optogenetic investigation of neural circuits underlying brain disease in animal models.
Nat Rev Neurosci. 2012 Mar 20;13(4):251-66. doi: 10.1038/nrn3171.
4
Spatial characterization of the motor neuron columns supplying the rat forelimb.
Neuroscience. 2012 Jan 3;200:19-30. doi: 10.1016/j.neuroscience.2011.10.054. Epub 2011 Nov 4.
5
An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse.
J Neurophysiol. 2012 Jan;107(2):728-41. doi: 10.1152/jn.00558.2011. Epub 2011 Oct 26.
6
The development and application of optogenetics.
Annu Rev Neurosci. 2011;34:389-412. doi: 10.1146/annurev-neuro-061010-113817.
7
Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15252-7. doi: 10.1073/pnas.0906551107. Epub 2010 Aug 9.
8
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
Nat Protoc. 2010 Mar;5(3):439-56. doi: 10.1038/nprot.2009.226. Epub 2010 Feb 18.
10
The subcellular organization of neocortical excitatory connections.
Nature. 2009 Feb 26;457(7233):1142-5. doi: 10.1038/nature07709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验