Suppr超能文献

利用DNA纳米管力学确定破裂气泡中的流体动力。

Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.

作者信息

Hariadi Rizal F, Winfree Erik, Yurke Bernard

机构信息

Applied Physics, California Institute of Technology, Pasadena, CA 91125;

Bioengineering, California Institute of Technology, Pasadena, CA 91125;

出版信息

Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):E6086-95. doi: 10.1073/pnas.1424673112. Epub 2015 Oct 26.

Abstract

Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean's environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension-driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm(3), elongational rates at least as large as [Formula: see text] s(-1) are generated in a fragmentation volume of [Formula: see text] [Formula: see text]. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont.

摘要

量化海洋中流体流动产生的机械力对于理解海洋环境现象至关重要。这些力可能通过驱动一种原始的通过碎片化进行自我复制的形式,在生命起源过程中发挥了重要作用。海洋中遇到的强烈水动力剪切源包括破浪以及此类波浪产生的破裂气泡。在微观尺度上,由于涉及的尺寸尺度和质量较小,人们预期气泡破裂过程中由表面张力驱动的流动会呈现出特别高的速度梯度。然而,很少有研究考察常见海洋条件下剪切流速率的强度。通过使用DNA纳米管作为一种新型流体流动传感器,我们利用实验室缓冲液和海水研究了水泡泡沫中破裂薄膜产生的伸长率。为了表征与破裂气泡相关的伸长率分布,我们引入了破碎体积的概念,并测量其作为伸长流速函数的形式。我们发现相当大的体积经历了惊人的高流速:在一个空气体积为10立方毫米的气泡破裂过程中,在[公式:见原文]立方毫米的破碎体积中产生的伸长率至少高达[公式:见原文]秒⁻¹。伸长应变率分布的确定对于评估海洋表面破裂气泡内的流体运动能够多有效地剪切微观颗粒和微生物以及是否能够驱动原生物的自我复制至关重要。

相似文献

1
Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):E6086-95. doi: 10.1073/pnas.1424673112. Epub 2015 Oct 26.
2
Elongational-flow-induced scission of DNA nanotubes in laminar flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046307. doi: 10.1103/PhysRevE.82.046307. Epub 2010 Oct 19.
4
Scale dependence of bubble creation mechanisms in breaking waves.
Nature. 2002 Aug 22;418(6900):839-44. doi: 10.1038/nature00967.
6
Size limits the formation of liquid jets during bubble bursting.
Nat Commun. 2011 Jun 21;2:367. doi: 10.1038/ncomms1369.
7
Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.
Adv Colloid Interface Sci. 2015 Mar;217:31-42. doi: 10.1016/j.cis.2014.12.004. Epub 2014 Dec 15.
9
Bubbles spray aerosols: Certitudes and mysteries.
PNAS Nexus. 2022 Nov 26;1(5):pgac261. doi: 10.1093/pnasnexus/pgac261. eCollection 2022 Nov.
10
Properties of Seawater Surfactants Associated with Primary Marine Aerosol Particles Produced by Bursting Bubbles at a Model Air-Sea Interface.
Environ Sci Technol. 2019 Aug 20;53(16):9407-9417. doi: 10.1021/acs.est.9b02637. Epub 2019 Aug 1.

引用本文的文献

1
DNA and the origins of life in micaceous clay.
Biophys J. 2022 Dec 20;121(24):4867-4873. doi: 10.1016/j.bpj.2022.08.032. Epub 2022 Sep 20.
3
Compound jetting from bubble bursting at an air-oil-water interface.
Nat Commun. 2021 Nov 2;12(1):6305. doi: 10.1038/s41467-021-26382-w.
4
Flowering in bursting bubbles with viscoelastic interfaces.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2105058118.
5
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.
Nucleic Acids Res. 2018 Jun 1;46(10):5332-5343. doi: 10.1093/nar/gky283.

本文引用的文献

1
POPULATION STRUCTURE OF A CLONAL GORGONIAN CORAL: THE INTERPLAY BETWEEN CLONAL REPRODUCTION AND DISTURBANCE.
Evolution. 1998 Apr;52(2):379-393. doi: 10.1111/j.1558-5646.1998.tb01639.x.
2
Nanoscale structure and microscale stiffness of DNA nanotubes.
ACS Nano. 2013 Aug 27;7(8):6700-10. doi: 10.1021/nn401362p. Epub 2013 Jul 31.
3
Concentration-driven growth of model protocell membranes.
J Am Chem Soc. 2012 Dec 26;134(51):20812-9. doi: 10.1021/ja310382d. Epub 2012 Dec 14.
4
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
5
Complex shapes self-assembled from single-stranded DNA tiles.
Nature. 2012 May 30;485(7400):623-6. doi: 10.1038/nature11075.
6
Robust self-replication of combinatorial information via crystal growth and scission.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6405-10. doi: 10.1073/pnas.1117813109. Epub 2012 Apr 9.
7
Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows.
Phys Rev Lett. 2012 Jan 20;108(3):038103. doi: 10.1103/PhysRevLett.108.038103. Epub 2012 Jan 19.
8
Elongational-flow-induced scission of DNA nanotubes in laminar flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046307. doi: 10.1103/PhysRevE.82.046307. Epub 2010 Oct 19.
9
Kinetics of DNA and RNA Hybridization in Serum and Serum-SDS.
IEEE Trans Nanotechnol. 2010 Sep 1;9(5):603-609. doi: 10.1109/TNANO.2010.2053380.
10
Plastic accumulation in the North Atlantic subtropical gyre.
Science. 2010 Sep 3;329(5996):1185-8. doi: 10.1126/science.1192321. Epub 2010 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验