Suppr超能文献

通过时间选通改善脑组织中活神经元的双光子成像。

Improved two-photon imaging of living neurons in brain tissue through temporal gating.

作者信息

Gautam Vini, Drury Jack, Choy Julian M C, Stricker Christian, Bachor Hans-A, Daria Vincent R

机构信息

John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.

John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia ; Medical School, The Australian National University, Canberra, ACT 2601, Australia.

出版信息

Biomed Opt Express. 2015 Sep 17;6(10):4027-36. doi: 10.1364/BOE.6.004027. eCollection 2015 Oct 1.

Abstract

We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane's input resistance.

摘要

我们通过对入射激光进行时间选通来优化脑组织中活神经元的双光子成像,以减少光子通量,同时优化从采集图像中获得的最大荧光信号。时间选通产生一束约10飞秒的脉冲,并且通过增加束脉冲能量来改善荧光信号。使用声光调制器实现选通,其可变选通频率被确定为成像采样频率的整数倍。我们假设降低光子通量可使对细胞的光损伤最小化。然而,我们的结果表明,尽管产生了高荧光信号,但当选通频率和采样频率相等时(或实际上每个像素一个束脉冲),细胞活力会受到损害。我们发现了一个最佳选通频率范围,该范围在保持采集的双光子图像预设荧光信号的同时维持细胞的活力。在全细胞膜片钳状态下对神经元进行成像,并将细胞膜输入电阻的变化作为细胞活力的监测指标。

相似文献

1
Improved two-photon imaging of living neurons in brain tissue through temporal gating.
Biomed Opt Express. 2015 Sep 17;6(10):4027-36. doi: 10.1364/BOE.6.004027. eCollection 2015 Oct 1.
2
Acousto-optic modulator system for femtosecond laser pulses.
Rev Sci Instrum. 2007 Jan;78(1):015103. doi: 10.1063/1.2409868.
3
Pulse train gating to improve signal generation for two-photon fluorescence microscopy.
Neurophotonics. 2023 Oct;10(4):045006. doi: 10.1117/1.NPh.10.4.045006. Epub 2023 Nov 6.
4
Pulse train gating to improve signal generation for two-photon fluorescence microscopy.
bioRxiv. 2023 Apr 3:2023.04.03.535393. doi: 10.1101/2023.04.03.535393.
6
Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.
J Neurosci Methods. 2006 Jun 30;154(1-2):161-74. doi: 10.1016/j.jneumeth.2005.12.010. Epub 2006 Feb 3.
7
Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.
Opt Express. 2012 May 21;20(11):12341-9. doi: 10.1364/OE.20.012341.
8
Photon gating in four-dimensional ultrafast electron microscopy.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12944-9. doi: 10.1073/pnas.1517942112. Epub 2015 Oct 5.
9
A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging.
Proc SPIE Int Soc Opt Eng. 2014 Apr 14;9141. doi: 10.1117/12.2052862. Epub 2014 May 15.

引用本文的文献

1
Photobleaching Analysis of Fluorescent Proteins in Two-Photon Microscopy at High Repetition Rates.
Opt Commun. 2025 Jan 1;574. doi: 10.1016/j.optcom.2024.131059. Epub 2024 Sep 3.
2
Pulse train gating to improve signal generation for two-photon fluorescence microscopy.
Neurophotonics. 2023 Oct;10(4):045006. doi: 10.1117/1.NPh.10.4.045006. Epub 2023 Nov 6.
3
SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection.
Sci Rep. 2023 Aug 30;13(1):14244. doi: 10.1038/s41598-023-41270-7.
4
Pulse train gating to improve signal generation for two-photon fluorescence microscopy.
bioRxiv. 2023 Apr 3:2023.04.03.535393. doi: 10.1101/2023.04.03.535393.
5
Two photon imaging of calcium responses in murine Purkinje neurons.
STAR Protoc. 2022 Jan 20;3(1):101105. doi: 10.1016/j.xpro.2021.101105. eCollection 2022 Mar 18.
6
Hybrid Electrical and Optical Neural Interfaces.
J Micromech Microeng. 2021 Apr;31(4). doi: 10.1088/1361-6439/abeb30. Epub 2021 Mar 19.
7
Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
Lasers Med Sci. 2020 Mar;35(2):317-328. doi: 10.1007/s10103-019-02908-z. Epub 2019 Nov 15.
8
Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.
Biomed Opt Express. 2018 Apr 23;9(5):2304-2311. doi: 10.1364/BOE.9.002304. eCollection 2018 May 1.
9
Improving Focal Photostimulation of Cortical Neurons with Pre-derived Wavefront Correction.
Front Cell Neurosci. 2017 May 1;11:105. doi: 10.3389/fncel.2017.00105. eCollection 2017.
10
Efficient multi-site two-photon functional imaging of neuronal circuits.
Biomed Opt Express. 2016 Nov 29;7(12):5325-5334. doi: 10.1364/BOE.7.005325. eCollection 2016 Dec 1.

本文引用的文献

1
Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
Nat Photonics. 2015 Feb;9(2):126-132. doi: 10.1038/nphoton.2014.322.
2
Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.
Nat Methods. 2015 Feb;12(2):140-6. doi: 10.1038/nmeth.3217. Epub 2014 Dec 22.
3
Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18739-44. doi: 10.1073/pnas.1421753111. Epub 2014 Dec 12.
6
Four-dimensional multi-site photolysis of caged neurotransmitters.
Front Cell Neurosci. 2013 Dec 2;7:231. doi: 10.3389/fncel.2013.00231. eCollection 2013.
8
Circumventing photodamage in live-cell microscopy.
Methods Cell Biol. 2013;114:545-60. doi: 10.1016/B978-0-12-407761-4.00023-3.
9
Two-way communication with neural networks in vivo using focused light.
Nat Protoc. 2013 Jun;8(6):1184-203. doi: 10.1038/nprot.2013.063. Epub 2013 May 23.
10
Frequency dependent detection in a STED microscope using modulated excitation light.
Opt Express. 2013 Jan 14;21(1):210-9. doi: 10.1364/OE.21.000210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验