Abdala Ana Paula, Toward Marie A, Dutschmann Mathias, Bissonnette John M, Paton Julian F R
School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia.
J Physiol. 2016 Jan 1;594(1):223-37. doi: 10.1113/JP270966. Epub 2015 Dec 14.
Life threatening breathing irregularity and central apnoeas are highly prevalent in children suffering from Rett syndrome. Abnormalities in inhibitory synaptic transmission have been associated with the physiopathology of this syndrome, and may underlie the respiratory disorder. In a mouse model of Rett syndrome, GABAergic terminal projections are markedly reduced in the Kölliker-Fuse nucleus (KF) in the dorsolateral pons, an important centre for control of respiratory rhythm regularity. Administration of a drug that augments endogenous GABA localized to this region of the pons reduced the incidence of apnoea and the respiratory irregularity of Rett female mice. Conversely, the respiratory disorder was recapitulated by blocking GABAergic transmission in the KF area of healthy rats. This study helps us understand the mechanism for generation of respiratory abnormality in Rett syndrome, pinpoints a brain site responsible and provides a clear anatomical target for the development of a translatable drug treatment. Central apnoeas and respiratory irregularity are a common feature in Rett syndrome (RTT), a neurodevelopmental disorder most often caused by mutations in the methyl-CpG-binding protein 2 gene (MECP2). We used a MECP2 deficient mouse model of RTT as a strategy to obtain insights into the neurobiology of the disease and into mechanisms essential for respiratory rhythmicity during normal breathing. Previously, we showed that, systemic administration of a GABA reuptake blocker in MECP2 deficient mice markedly reduced the occurrence of central apnoeas. Further, we found that, during central apnoeas, post-inspiratory drive (adductor motor) to the upper airways was enhanced in amplitude and duration in Mecp2 heterozygous female mice. Since the pontine Kölliker-Fuse area (KF) drives post-inspiration, suppresses inspiration, and can reset the respiratory oscillator phase, we hypothesized that synaptic inhibition in this area is essential for respiratory rhythm regularity. In this study, we found that: (i) Mecp2 heterozygous mice showed deficiency of GABA perisomatic bouton-like puncta and processes in the KF nucleus; (ii) blockade of GABA reuptake in the KF of RTT mice reduced breathing irregularity; (iii) conversely, blockade of GABAA receptors in the KF of healthy rats mimicked the RTT respiratory phenotype of recurrent central apnoeas and prolonged post-inspiratory activity. Our results show that reductions in synaptic inhibition within the KF induce rhythm irregularity whereas boosting GABA transmission reduces respiratory arrhythmia in a murine model of RTT. Our data suggest that manipulation of synaptic inhibition in KF may be a clinically important strategy for alleviating the life threatening respiratory disorders in RTT.
危及生命的呼吸不规律和中枢性呼吸暂停在患有雷特综合征的儿童中非常普遍。抑制性突触传递异常与该综合征的生理病理学有关,可能是呼吸障碍的基础。在雷特综合征的小鼠模型中,脑桥背外侧的 Kölliker-Fuse 核(KF)中的 GABA 能终末投射明显减少,而 KF 是控制呼吸节律规律性的重要中枢。给予一种能增强定位于脑桥该区域的内源性 GABA 的药物,可降低雷特雌性小鼠的呼吸暂停发生率和呼吸不规律性。相反,通过阻断健康大鼠 KF 区域的 GABA 能传递可重现呼吸障碍。这项研究有助于我们了解雷特综合征中呼吸异常产生的机制,确定一个负责的脑区,并为开发可转化的药物治疗提供明确的解剖学靶点。中枢性呼吸暂停和呼吸不规律是雷特综合征(RTT)的常见特征,RTT 是一种神经发育障碍,最常见的原因是甲基-CpG 结合蛋白 2 基因(MECP2)突变。我们使用 RTT 的 MECP2 缺陷小鼠模型来深入了解该疾病的神经生物学以及正常呼吸过程中呼吸节律的基本机制。此前,我们表明,在 MECP2 缺陷小鼠中全身给予 GABA 再摄取阻滞剂可显著降低中枢性呼吸暂停的发生率。此外,我们发现,在中枢性呼吸暂停期间,Mecp2 杂合雌性小鼠对上呼吸道的吸气后驱动(内收肌运动)在幅度和持续时间上均增强。由于脑桥 Kölliker-Fuse 区(KF)驱动吸气后动作、抑制吸气并可重置呼吸振荡器相位,我们推测该区域的突触抑制对呼吸节律的规律性至关重要。在本研究中,我们发现:(i)Mecp2 杂合小鼠在 KF 核中显示 GABA 躯体周围纽扣样斑点和突起缺乏;(ii)阻断 RTT 小鼠 KF 中的 GABA 再摄取可减少呼吸不规律性;(iii)相反,阻断健康大鼠 KF 中的 GABAA 受体可模拟 RTT 的复发性中枢性呼吸暂停和延长吸气后活动的呼吸表型。我们的结果表明,KF 内突触抑制的减少会导致节律不规律,而增强 GABA 传递可减少 RTT 小鼠模型中的呼吸心律失常。我们的数据表明,操纵 KF 中的突触抑制可能是缓解 RTT 中危及生命的呼吸障碍的一项重要临床策略。