Suppr超能文献

使用专家混合模型捕捉异质群体差异:在衰老研究中的应用。

Capturing heterogeneous group differences using mixture-of-experts: Application to a study of aging.

作者信息

Eavani Harini, Hsieh Meng Kang, An Yang, Erus Guray, Beason-Held Lori, Resnick Susan, Davatzikos Christos

机构信息

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA.

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA.

出版信息

Neuroimage. 2016 Jan 15;125:498-514. doi: 10.1016/j.neuroimage.2015.10.045. Epub 2015 Oct 23.

Abstract

In MRI studies, linear multi-variate methods are often employed to identify regions or connections that are affected due to disease or normal aging. Such linear models inherently assume that there is a single, homogeneous abnormality pattern that is present in all affected individuals. While kernel-based methods can implicitly model a non-linear effect, and therefore the heterogeneity in the affected group, extracting and interpreting information about affected regions is difficult. In this paper, we present a method that explicitly models and captures heterogeneous patterns of change in the affected group relative to a reference group of controls. For this purpose, we use the Mixture-of-Experts (MOE) framework, which combines unsupervised modeling of mixtures of distributions with supervised learning of classifiers. MOE approximates the non-linear boundary between the two groups with a piece-wise linear boundary, thus allowing discovery of multiple patterns of group differences. In the case of patient/control comparisons, each such pattern aims to capture a different dimension of a disease, and hence to identify patient subgroups. We validated our model using multiple simulation scenarios and performance measures. We applied this method to resting state functional MRI data from the Baltimore Longitudinal Study of Aging, to investigate heterogeneous effects of aging on brain function in cognitively normal older adults (>85years) relative to a reference group of normal young to middle-aged adults (<60years). We found strong evidence for the presence of two subgroups of older adults, with similar age distributions in each subgroup, but different connectivity patterns associated with aging. While both older subgroups showed reduced functional connectivity in the Default Mode Network (DMN), increases in functional connectivity within the pre-frontal cortex as well as the bilateral insula were observed only for one of the two subgroups. Interestingly, the subgroup showing this increased connectivity (unlike the other subgroup) was, cognitively similar at baseline to the young and middle-aged subjects in two of seven cognitive domains, and had a faster rate of cognitive decline in one of seven domains. These results suggest that older individuals whose baseline cognitive performance is comparable to that of younger individuals recruit their "cognitive reserve" later in life, to compensate for reduced connectivity in other brain regions.

摘要

在磁共振成像(MRI)研究中,线性多变量方法常被用于识别因疾病或正常衰老而受到影响的区域或连接。此类线性模型本质上假定所有受影响个体中存在单一、同质的异常模式。虽然基于核的方法可以隐式地对非线性效应进行建模,从而也能对受影响群体中的异质性进行建模,但提取和解释有关受影响区域的信息却很困难。在本文中,我们提出了一种方法,该方法能相对于对照组参考组,明确地对受影响群体中变化的异质模式进行建模并捕捉。为此,我们使用了专家混合(MOE)框架,该框架将分布混合的无监督建模与分类器的监督学习相结合。MOE用分段线性边界近似两组之间的非线性边界,从而能够发现群体差异的多种模式。在患者/对照比较的情况下,每种这样的模式旨在捕捉疾病的不同维度,进而识别患者亚组。我们使用多种模拟场景和性能指标对我们的模型进行了验证。我们将此方法应用于来自巴尔的摩衰老纵向研究的静息态功能MRI数据,以研究相对于正常年轻至中年成年人(<60岁)的参考组,衰老对认知正常的老年人(>85岁)脑功能的异质影响。我们发现有力证据表明存在两个老年人亚组,每个亚组中的年龄分布相似,但与衰老相关的连接模式不同。虽然两个老年亚组在默认模式网络(DMN)中均显示功能连接减少,但仅在两个亚组中的一个中观察到前额叶皮质以及双侧脑岛内的功能连接增加。有趣的是,显示这种连接增加的亚组(与另一个亚组不同)在七个认知领域中的两个领域,基线时在认知上与年轻和中年受试者相似,并且在七个领域中的一个领域中认知衰退速度更快。这些结果表明,基线认知表现与年轻人相当的老年人在生命后期会调用他们的“认知储备”,以补偿其他脑区连接性的降低。

相似文献

引用本文的文献

本文引用的文献

1
Adaptive Mixtures of Local Experts.局部专家的自适应混合模型
Neural Comput. 1991 Spring;3(1):79-87. doi: 10.1162/neco.1991.3.1.79.
2
Disentangling Disease Heterogeneity with Max-Margin Multiple Hyperplane Classifier.使用最大间隔多超平面分类器解析疾病异质性
Med Image Comput Comput Assist Interv. 2015 Oct;9349:702-709. doi: 10.1007/978-3-319-24553-9_86. Epub 2015 Nov 18.
3
Large Margin Local Estimate With Applications to Medical Image Classification.大间隔局部估计及其在医学图像分类中的应用。
IEEE Trans Med Imaging. 2015 Jun;34(6):1362-77. doi: 10.1109/TMI.2015.2393954. Epub 2015 Jan 19.
7
Neuroimaging of the Philadelphia neurodevelopmental cohort.费城神经发育队列的神经影像学研究。
Neuroimage. 2014 Feb 1;86:544-53. doi: 10.1016/j.neuroimage.2013.07.064. Epub 2013 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验