Booth N, Robinson A P L, Hakel P, Clarke R J, Dance R J, Doria D, Gizzi L A, Gregori G, Koester P, Labate L, Levato T, Li B, Makita M, Mancini R C, Pasley J, Rajeev P P, Riley D, Wagenaars E, Waugh J N, Woolsey N C
Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
Department of Physics, College of Science, University of Nevada, Reno, Nevada 89557-0208, USA.
Nat Commun. 2015 Nov 6;6:8742. doi: 10.1038/ncomms9742.
Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.
自1995年观测到第一颗褐矮星以来,众多研究让我们对这些天体的结构有了更深入的了解。在此,我们展示一种在实验室中研究温暖稠密等离子体中物质电阻率的方法,我们通过粘度和电子碰撞将其与褐矮星的微观物理学联系起来。在此,我们使用X射线偏振测量法来确定由超强激光加热到褐矮星条件的掺硫塑料靶的电阻率。通过将等离子体物理模型与所测量的大的正偏振的原子物理计算结果相匹配来确定电阻率。推断出的电阻率大于使用标准电阻率模型预测的值,这表明这些常用模型无法充分描述与褐矮星粘度相关的温暖稠密等离子体的电阻率。