Suppr超能文献

透明质酸作为人类疾病的治疗靶点。

Hyaluronan as a therapeutic target in human diseases.

作者信息

Liang Jiurong, Jiang Dianhua, Noble Paul W

机构信息

Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

出版信息

Adv Drug Deliv Rev. 2016 Feb 1;97:186-203. doi: 10.1016/j.addr.2015.10.017. Epub 2015 Nov 2.

Abstract

Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.

摘要

细胞外基质的积累和更新是人类疾病中组织损伤、修复和重塑的一个标志。透明质酸是细胞外基质的主要成分,在调节组织损伤和修复以及控制疾病结局方面发挥着重要作用。透明质酸的功能取决于其大小、位置以及与结合伴侣的相互作用。虽然片段化的透明质酸可通过多种调节炎症反应和组织修复的细胞类型刺激一系列基因的表达,但细胞表面的透明质酸可保护组织免受环境损伤,并促进再生和修复。透明质酸与其结合蛋白的相互作用参与了许多人类疾病的发病机制。因此,针对透明质酸及其与细胞和蛋白质的相互作用可能为开发炎症性和纤维化疾病的治疗方法提供新途径。本综述重点关注透明质酸在生物学和病理过程中的作用,以及作为人类疾病潜在治疗靶点的作用。

相似文献

1
Hyaluronan as a therapeutic target in human diseases.
Adv Drug Deliv Rev. 2016 Feb 1;97:186-203. doi: 10.1016/j.addr.2015.10.017. Epub 2015 Nov 2.
2
Hyaluronan in tissue injury and repair.
Annu Rev Cell Dev Biol. 2007;23:435-61. doi: 10.1146/annurev.cellbio.23.090506.123337.
3
Hyaluronan as an immune regulator in human diseases.
Physiol Rev. 2011 Jan;91(1):221-64. doi: 10.1152/physrev.00052.2009.
4
Hyaluronan biology: A complex balancing act of structure, function, location and context.
Matrix Biol. 2019 May;78-79:1-10. doi: 10.1016/j.matbio.2019.02.002. Epub 2019 Feb 23.
5
Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease.
Immunobiology. 2015 May;220(5):575-88. doi: 10.1016/j.imbio.2014.12.005. Epub 2014 Dec 31.
6
Hyaluronan: Metabolism and Function.
Biomolecules. 2020 Nov 7;10(11):1525. doi: 10.3390/biom10111525.
7
Hyaluronan.
FASEB J. 1992 Apr;6(7):2397-404.
8
Modulation of hyaluronan signaling as a therapeutic target in human disease.
Pharmacol Ther. 2022 Apr;232:107993. doi: 10.1016/j.pharmthera.2021.107993. Epub 2021 Sep 26.
9
Retinoic acid grafted to hyaluronan for skin delivery: Synthesis, stability studies, and biological evaluation.
Carbohydr Polym. 2020 Mar 1;231:115733. doi: 10.1016/j.carbpol.2019.115733. Epub 2019 Dec 10.
10
Hyaluronan: towards novel anti-cancer therapeutics.
Pharmacol Rep. 2013;65(5):1056-74. doi: 10.1016/s1734-1140(13)71465-8.

引用本文的文献

2
Diffusion of Sodium Hyaluronate in Artificial Saliva to Optimize Its Topical Application.
Molecules. 2025 May 13;30(10):2140. doi: 10.3390/molecules30102140.
4
Role of hyaluronic acid in the treatment of peri-implant diseases: results of a meta-analysis.
Front Oral Health. 2025 May 1;6:1564599. doi: 10.3389/froh.2025.1564599. eCollection 2025.
5
Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties.
Adv Ther (Weinh). 2024 Oct;7(10). doi: 10.1002/adtp.202400041. Epub 2024 Sep 11.
7
Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks.
J Nanobiotechnology. 2025 Mar 2;23(1):158. doi: 10.1186/s12951-025-03210-7.
9
Recent advances in zeolitic imidazolate frameworks as drug delivery systems for cancer therapy.
Asian J Pharm Sci. 2025 Feb;20(1):101017. doi: 10.1016/j.ajps.2025.101017. Epub 2025 Jan 10.
10
Hyaluronic Acid is Associated with Severity and Prognosis in Patients with Community-Acquired Pneumonia.
J Inflamm Res. 2024 Dec 30;17:11829-11843. doi: 10.2147/JIR.S499326. eCollection 2024.

本文引用的文献

2
Hyaluronic acid as a non-invasive biomarker of liver fibrosis.
Clin Biochem. 2016 Feb;49(3):302-15. doi: 10.1016/j.clinbiochem.2015.07.019. Epub 2015 Jul 17.
3
Hyaluronan, Inflammation, and Breast Cancer Progression.
Front Immunol. 2015 Jun 8;6:236. doi: 10.3389/fimmu.2015.00236. eCollection 2015.
4
Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer.
Oncoscience. 2015 Mar 23;2(4):373-81. doi: 10.18632/oncoscience.150. eCollection 2015.
5
CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells.
Front Immunol. 2015 May 26;6:235. doi: 10.3389/fimmu.2015.00235. eCollection 2015.
6
Design and syntheses of hyaluronan oligosaccharide conjugates as inhibitors of CD44-Hyaluronan binding.
Glycoconj J. 2015 Oct;32(7):549-56. doi: 10.1007/s10719-015-9597-3. Epub 2015 May 22.
7
Modulation of bleomycin-induced lung fibrosis by pegylated hyaluronidase and dopamine receptor antagonist in mice.
PLoS One. 2015 Apr 30;10(4):e0125065. doi: 10.1371/journal.pone.0125065. eCollection 2015.
8
The role of hyaluronan in innate defense responses of the intestine.
Int J Cell Biol. 2015;2015:481301. doi: 10.1155/2015/481301. Epub 2015 Mar 30.
9
CD44 Acts as a Signaling Platform Controlling Tumor Progression and Metastasis.
Front Immunol. 2015 Apr 8;6:154. doi: 10.3389/fimmu.2015.00154. eCollection 2015.
10
4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis.
Glycobiology. 2015 Aug;25(8):825-35. doi: 10.1093/glycob/cwv023. Epub 2015 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验