Liu Shijia, Shao Shangjin, Li Linlin, Cheng Zhi, Tian Li, Gao Peiji, Wang Lushan
Taishan College, Shandong University, Jinan 250100, China.
The State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
Carbohydr Res. 2015 Dec 11;418:50-56. doi: 10.1016/j.carres.2015.10.002. Epub 2015 Oct 21.
Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.
几丁质酶和壳聚糖酶,统称为几丁质分解酶,是糖苷水解酶(GH)的两个重要类别,在降解几丁质和壳聚糖这两种天然丰富的多糖中起关键作用。在此,我们研究了主要壳聚糖酶家族(GH8、GH46)和几丁质酶家族(GH18、GH19)的活性位点结构。与酶结构中的其他位置相比,在几丁质分解活性位点中观察到带电荷的氨基酸(Glu、His、Arg、Asp)和芳香族氨基酸(Tyr、Trp、Phe)出现的频率更高,这表明它们与酶的功能密切相关。几丁质分解酶与底物C2官能团(即氨基和N - 乙酰基)之间的氢键驱动底物识别,而芳香族残基与底物之间的非特异性CH-π相互作用主要有助于在GH8和GH18酶中表现出的更紧密结合和更高的持续合成能力。对于不同家族的几丁质分解酶,结合在活性位点中的底物原子的数量、类型和位置各不相同,从而导致不同的底物结合特异性。本文提供的数据在分子水平上解释了多个酶家族的协同作用,并为功能注释提供了更合理的方法,可进一步应用于几丁质酶和壳聚糖酶的实际工程。