Hou Ying, Hossain Gazi Sakir, Li Jianghua, Shin Hyun-Dong, Du Guocheng, Liu Long
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
Appl Microbiol Biotechnol. 2016 Mar;100(5):2183-91. doi: 10.1007/s00253-015-7048-5. Epub 2015 Nov 10.
In our previous study, we produced phenylpyruvic acid (PPA) in one step from L-phenylalanine by using an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase (L-AAD) from Proteus mirabilis KCTC2566. However, the PPA titer was low due to the degradation of PPA and low substrate specificity of L-AAD. In this study, metabolic engineering of the L-phenylalanine degradation pathway in E. coli and protein engineering of L-AAD from P. mirabilis were performed to improve the PPA titer. First, three aminotransferase genes were knocked out to block PPA degradation, which increased the PPA titer from 3.3 ± 0.2 to 3.9 ± 0.1 g/L and the substrate conversion ratio to 97.5 %. Next, L-AAD was engineered via error-prone polymerase chain reaction, followed by site-saturation mutation to improve its catalytic performance. The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 ± 0.4 g/L, with a substrate conversion ratio of 100 %, which was 3.0 times that of wild-type L-AAD. Comparative kinetics analysis showed that compared with wild-type L-AAD, the triple mutant had higher substrate-binding affinity and catalytic efficiency. Finally, an optimal fed-batch biotransformation process was developed to achieve a maximal PPA titer of 21 ± 1.8 g/L within 8 h. This study developed a robust whole-cell E. coli biocatalyst for PPA production by integrating metabolic and protein engineering, strategies that may be useful for the construction of other biotransformation biocatalysts.
在我们之前的研究中,我们通过使用表达奇异变形杆菌KCTC2566来源的L-氨基酸脱氨酶(L-AAD)的大肠杆菌全细胞生物催化剂,从L-苯丙氨酸一步生产苯丙酮酸(PPA)。然而,由于PPA的降解和L-AAD的低底物特异性,PPA的滴度较低。在本研究中,对大肠杆菌中L-苯丙氨酸降解途径进行代谢工程改造,并对奇异变形杆菌的L-AAD进行蛋白质工程改造,以提高PPA滴度。首先,敲除三个转氨酶基因以阻断PPA降解,这使PPA滴度从3.3±0.2提高到3.9±0.1 g/L,底物转化率提高到97.5%。接下来,通过易错聚合酶链反应对L-AAD进行工程改造,随后进行位点饱和突变以改善其催化性能。三重突变体D165K/F263M/L336M产生的最高PPA滴度为10.0±0.4 g/L,底物转化率为100%,是野生型L-AAD的3.0倍。比较动力学分析表明,与野生型L-AAD相比,三重突变体具有更高的底物结合亲和力和催化效率。最后,开发了一种优化的补料分批生物转化工艺,在8小时内实现了21±1.8 g/L的最大PPA滴度。本研究通过整合代谢工程和蛋白质工程,开发了一种强大的用于生产PPA的大肠杆菌全细胞生物催化剂,这些策略可能对构建其他生物转化生物催化剂有用。