Suppr超能文献

探究碲化镉量子点与伪狂犬病病毒的相互作用。

Probing the interactions of CdTe quantum dots with pseudorabies virus.

作者信息

Du Ting, Cai Kaimei, Han Heyou, Fang Liurong, Liang Jiangong, Xiao Shaobo

机构信息

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.

College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China.

出版信息

Sci Rep. 2015 Nov 10;5:16403. doi: 10.1038/srep16403.

Abstract

Quantum dots (QDs) have become one of the most promising luminescent materials for tracking viral infection in living cells. However, several issues regarding how QDs interact with the virus remain unresolved. Herein, the effects of Glutathione (GSH) capped CdTe QDs on virus were investigated by using pseudorabies virus (PRV) as a model. One-step growth curve and fluorescence colocalization analyses indicate that CdTe QDs inhibit PRV multiplication in the early stage of virus replication cycle by suppressing the invasion, but have no significant effect on the PRV penetration. Fluorescence spectrum analysis indicates that the size of QDs is reduced gradually after the addition of PRV within 30 min. Release of Cd(2+) was detected during the interaction of QDs and PRV, resulting in a decreased number of viruses which can infect cells. Further Raman spectra and Circular Dichroism (CD) spectroscopy analyses reveal that the structure of viral surface proteins is altered by CdTe QDs adsorbed on the virus surface, leading to the inhibition of virus replication. This study facilitates an in-depth understanding of the pathogenic mechanism of viruses and provides a basis for QDs-labeled virus research.

摘要

量子点(QDs)已成为用于追踪活细胞中病毒感染的最有前景的发光材料之一。然而,关于量子点如何与病毒相互作用的几个问题仍未解决。在此,以伪狂犬病病毒(PRV)为模型,研究了谷胱甘肽(GSH)包覆的碲化镉量子点对病毒的影响。一步生长曲线和荧光共定位分析表明,碲化镉量子点在病毒复制周期的早期通过抑制入侵来抑制PRV增殖,但对PRV的穿透没有显著影响。荧光光谱分析表明,在加入PRV后30分钟内,量子点的尺寸逐渐减小。在量子点与PRV相互作用期间检测到镉离子(Cd(2+))的释放,导致可感染细胞的病毒数量减少。进一步的拉曼光谱和圆二色性(CD)光谱分析表明,吸附在病毒表面的碲化镉量子点改变了病毒表面蛋白的结构,从而导致病毒复制受到抑制。本研究有助于深入了解病毒的致病机制,并为量子点标记病毒的研究提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af4/4639764/43d2c2fee9dd/srep16403-f1.jpg

相似文献

1
Probing the interactions of CdTe quantum dots with pseudorabies virus.
Sci Rep. 2015 Nov 10;5:16403. doi: 10.1038/srep16403.
3
Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate.
J Colloid Interface Sci. 2015 Jun 15;448:257-64. doi: 10.1016/j.jcis.2015.02.034. Epub 2015 Feb 23.
4
In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility.
J Colloid Interface Sci. 2010 Nov 1;351(1):1-9. doi: 10.1016/j.jcis.2010.07.047. Epub 2010 Jul 23.
7
Adhesion of quantum dots-induced membrane damage of Escherichia coli.
J Colloid Interface Sci. 2013 Jan 1;389(1):61-70. doi: 10.1016/j.jcis.2012.09.002. Epub 2012 Sep 17.
8
Spectroscopic investigations on the effect of N-acetyl-L-cysteine-capped CdTe Quantum Dots on catalase.
Spectrochim Acta A Mol Biomol Spectrosc. 2014 Nov 11;132:692-9. doi: 10.1016/j.saa.2014.04.157. Epub 2014 May 9.
10
Sensitive detection of sodium cromoglycate with glutathione-capped CdTe quantum dots as a novel fluorescence probe.
Luminescence. 2015 Nov;30(7):1112-8. doi: 10.1002/bio.2867. Epub 2015 Feb 12.

引用本文的文献

1
Advances in molecular epidemiology and detection methods of pseudorabies virus.
Discov Nano. 2025 Feb 24;20(1):45. doi: 10.1186/s11671-025-04217-7.
2
Anti-HSV Activity of Metallic Nanoparticles Functionalized with Sulfonates vs. Polyphenols.
Int J Mol Sci. 2022 Oct 28;23(21):13104. doi: 10.3390/ijms232113104.
3
Antiviral potential of nanoparticles for the treatment of Coronavirus infections.
J Trace Elem Med Biol. 2022 Jul;72:126977. doi: 10.1016/j.jtemb.2022.126977. Epub 2022 Mar 26.
4
Masks for COVID-19.
Adv Sci (Weinh). 2022 Jan;9(3):e2102189. doi: 10.1002/advs.202102189. Epub 2021 Nov 26.
5
Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19.
Biol Trace Elem Res. 2022 Jun;200(6):2639-2650. doi: 10.1007/s12011-021-02893-x. Epub 2021 Aug 27.
6
Metal-Based Nanomaterials: Work as Drugs and Carriers against Viral Infections.
Nanomaterials (Basel). 2021 Aug 20;11(8):2129. doi: 10.3390/nano11082129.
7
Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections.
AAPS PharmSciTech. 2021 Jan 14;22(1):47. doi: 10.1208/s12249-020-01908-5.
8
Exploring the Potential of Carbon Dots to Combat COVID-19.
Front Mol Biosci. 2020 Dec 17;7:616575. doi: 10.3389/fmolb.2020.616575. eCollection 2020.
9
Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses?
Nanomaterials (Basel). 2020 Aug 21;10(9):1645. doi: 10.3390/nano10091645.
10
An overview of functional nanoparticles as novel emerging antiviral therapeutic agents.
Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110924. doi: 10.1016/j.msec.2020.110924. Epub 2020 Apr 6.

本文引用的文献

1
Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots.
Chemosphere. 2015 Sep;135:240-9. doi: 10.1016/j.chemosphere.2015.04.044. Epub 2015 May 15.
2
Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis.
PLoS Pathog. 2014 Dec 4;10(12):e1004535. doi: 10.1371/journal.ppat.1004535. eCollection 2014 Dec.
4
A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge.
Virus Res. 2015 Jan 2;195:57-63. doi: 10.1016/j.virusres.2014.09.003. Epub 2014 Sep 18.
6
Three-dimensional tracking of Rab5- and Rab7-associated infection process of influenza virus.
Small. 2014 Nov;10(22):4746-53. doi: 10.1002/smll.201400944. Epub 2014 Jun 27.
7
Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction.
Langmuir. 2014 Jul 15;30(27):8167-76. doi: 10.1021/la501595f. Epub 2014 Jul 3.
9
Progress on the labeling and single-particle tracking technologies of viruses.
Analyst. 2014 Jul 7;139(13):3336-46. doi: 10.1039/c4an00038b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验