Pahwa Mrinal, Kusner Matthew, Hacker Carl D, Bundy David T, Weinberger Kilian Q, Leuthardt Eric C
Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America.
Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America.
PLoS One. 2015 Nov 12;10(11):e0142947. doi: 10.1371/journal.pone.0142947. eCollection 2015.
Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.
先前的研究表明,使用皮质脑电图(ECoG)可以实现对脑机接口(BCI)的稳定且强大的控制。将这项技术从实验室应用到现实世界需要额外的方法,以便用户能够自主操作基于ECoG的BCI。在这样的环境中,用户必须能够执行实验者目前执行的所有任务,包括手动打开/关闭BCI系统。虽然这是一项简单的任务,但由于严重的运动障碍,对于目标用户(例如四肢瘫痪者)来说可能具有挑战性。在本研究中,我们提出了一种基于用户认知状态自动开启或关闭BCI系统的实用策略。我们使用逻辑回归建立了概率模型,该模型利用人类的硬膜下ECoG信号来伪实时估计一个人是清醒还是处于类似睡眠的状态,进而判断是否开启或关闭BCI系统。此外,我们对这些模型进行了约束,以确定用于描绘状态的最佳解剖学和频谱参数。虽然存在其他使用ECoG区分清醒和睡眠状态的方法,但没有一种方法考虑到BCI应用的实际需求,例如最小化ECoG植入物的尺寸以及实时预测状态。我们的结果表明,对于4名个体,仅使用位于中央前回和颞上回后部上方的5个电极(直径为2.3毫米的铂盘)的高伽马(70 - 110赫兹)频段受限功率,就可以在伪实时情况下以超过80%的准确率(高达92%)对清醒和类似睡眠的状态进行分类。