Fales B Scott, Levine Benjamin G
Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.
J Chem Theory Comput. 2015 Oct 13;11(10):4708-16. doi: 10.1021/acs.jctc.5b00634. Epub 2015 Oct 5.
Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.
基于轨道活性空间中完全组态相互作用(FCI)展开的方法被广泛用于模拟化学现象,如中小分子中的键断裂、多重激发态和锥形交叉,但这些现象在各种尺寸的系统中都会出现。为了将此类计算扩展到纳米尺度,我们开发了一种FCI实现方案,其中电子排斥积分变换以及σ向量形成中几个更耗时的步骤在图形处理单元(GPU)硬件上执行。当应用于用极化全电子6-31G**基组描述的1.7×1.4×1.4纳米硅纳米颗粒(Si72H64)时,我们的实现方案能够在单个英伟达K40 GPU上于39分钟内求解16个活性电子/16个活性轨道的CASCI哈密顿量的基态(超过1亿个组态)。