Dickson Price E, Miller Mellessa M, Calton Michele A, Bubier Jason A, Cook Melloni N, Goldowitz Daniel, Chesler Elissa J, Mittleman Guy
The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
Department of Psychology, University of Memphis, Memphis, TN, 38152, USA.
Psychopharmacology (Berl). 2016 Feb;233(4):701-14. doi: 10.1007/s00213-015-4147-z. Epub 2015 Nov 19.
Cocaine addiction is a major public health problem with a substantial genetic basis for which the biological mechanisms remain largely unknown. Systems genetics is a powerful method for discovering novel mechanisms underlying complex traits, and intravenous drug self-administration (IVSA) is the gold standard for assessing volitional drug use in preclinical studies. We have integrated these approaches to identify novel genes and networks underlying cocaine use in mice.
Mice from 39 BXD strains acquired cocaine IVSA (0.56 mg/kg/infusion). Mice from 29 BXD strains completed a full dose-response curve (0.032-1.8 mg/kg/infusion). We identified independent genetic correlations between cocaine IVSA and measures of environmental exploration and cocaine sensitization. We identified genome-wide significant quantitative trait loci (QTL) on chromosomes 7 and 11 associated with shifts in the dose-response curve and on chromosome 16 associated with sessions to acquire cocaine IVSA. Using publicly available gene expression data from the nucleus accumbens, midbrain, and prefrontal cortex of drug-naïve mice, we identified Aplp1 and Cyfip2 as positional candidates underlying the behavioral QTL on chromosomes 7 and 11, respectively. A genome-wide significant trans-eQTL linking Fam53b (a GWAS candidate for human cocaine dependence) on chromosome 7 to the cocaine IVSA behavioral QTL on chromosome 11 was identified in the midbrain; Fam53b and Cyfip2 were co-expressed genome-wide significantly in the midbrain. This finding indicates that cocaine IVSA studies using mice can identify genes involved in human cocaine use.
These data provide novel candidate genes underlying cocaine IVSA in mice and suggest mechanisms driving human cocaine use.
可卡因成瘾是一个重大的公共卫生问题,具有 substantial(此处未给出明确释义,推测为“重要的”)遗传基础,但其生物学机制在很大程度上仍不为人知。系统遗传学是发现复杂性状潜在新机制的有力方法,而静脉注射药物自我给药(IVSA)是临床前研究中评估自愿药物使用的金标准。我们整合了这些方法来识别小鼠可卡因使用背后的新基因和网络。
来自39个BXD品系的小鼠进行了可卡因IVSA(0.56毫克/千克/输注)。来自29个BXD品系的小鼠完成了完整的剂量反应曲线(0.032 - 1.8毫克/千克/输注)。我们确定了可卡因IVSA与环境探索和可卡因敏化测量之间的独立遗传相关性。我们在7号和11号染色体上确定了与剂量反应曲线变化相关的全基因组显著数量性状位点(QTL),以及在16号染色体上与获得可卡因IVSA的实验次数相关的QTL。利用来自未接触过药物的小鼠伏隔核、中脑和前额叶皮质的公开可用基因表达数据,我们分别确定Aplp1和Cyfip2为7号和11号染色体上行为QTL的位置候选基因。在中脑中发现了一个全基因组显著的反式eQTL,将7号染色体上的Fam53b(人类可卡因依赖的全基因组关联研究候选基因)与11号染色体上的可卡因IVSA行为QTL联系起来;Fam53b和Cyfip2在全基因组中在中脑显著共表达。这一发现表明,使用小鼠进行的可卡因IVSA研究可以识别参与人类可卡因使用的基因。
这些数据提供了小鼠可卡因IVSA背后的新候选基因,并提示了驱动人类可卡因使用的机制。