Suppr超能文献

纳米结构多孔 RuO2/MnO2 作为高效催化剂用于高速率 Li-O2 电池。

Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries.

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

出版信息

Nanoscale. 2015 Dec 28;7(48):20614-24. doi: 10.1039/c5nr07486j. Epub 2015 Nov 23.

Abstract

Despite the recent advancements in Li-O(2) (or Li-air) batteries, great challenges still remain to realize high-rate, long-term cycling. In this work, a binder-free, nanostructured RuO(2)/MnO(2) catalytic cathode was designed to realize the operation of Li-O(2) batteries at high rates. At a current density as high as 3200 mA g(-1) (or ∼1.3 mA cm(-2)), the RuO(2)/MnO(2) catalyzed Li-O(2) batteries with LiI can sustain stable cycling of 170 and 800 times at limited capacities of 1000 and 500 mA h g(-1), respectively, with low charge cutoff potentials of ∼4.0 and <3.8 V, respectively. The underlying mechanism of the high catalytic performance of MnO(2)/RuO(2) was also clarified in this work. It was found that with the catalytic effect of RuO(2), Li(2)O(2) can crystallize into a thin-sheet form and realize a conformal growth on sheet-like δ-MnO(2) at a current density up to 3200 mA g(-1), constructing a sheet-on-sheet structure. This crystallization behavior of Li(2)O(2) not only defers the electrode passivation upon discharge but also renders easy decomposition of Li(2)O(2) upon charge, leading to low polarizations and reduced side reactions. This work provides a unique design of catalytic cathodes capable of controlling Li(2)O(2) growth and sheds light on the design of high-rate, long-life Li-O(2) batteries with potential applications in electric vehicles.

摘要

尽管 Li-O(2)(或 Li-air)电池最近取得了进展,但要实现高倍率、长循环仍面临巨大挑战。在这项工作中,设计了一种无粘结剂的纳米结构 RuO(2)/MnO(2)催化阴极,以实现 Li-O(2)电池在高倍率下的运行。在高达 3200 mA g(-1)(或 ∼1.3 mA cm(-2))的电流密度下,具有 LiI 的 RuO(2)/MnO(2)催化 Li-O(2)电池可以在 1000 和 500 mA h g(-1)的有限容量下分别稳定循环 170 和 800 次,分别具有低充电截止电位约 4.0 和 <3.8 V。在这项工作中还阐明了 MnO(2)/RuO(2)高催化性能的潜在机制。研究发现,在 RuO(2)的催化作用下,Li(2)O(2)可以结晶成薄片状,并在高达 3200 mA g(-1)的电流密度下在片状 δ-MnO(2)上实现共形生长,构建出片状-片状结构。Li(2)O(2)的这种结晶行为不仅延迟了放电时的电极钝化,而且有利于充电时 Li(2)O(2)的分解,从而降低了极化和减少了副反应。这项工作提供了一种能够控制 Li(2)O(2)生长的催化阴极的独特设计,并为设计具有潜在应用前景的电动汽车的高倍率、长寿命 Li-O(2)电池提供了思路。

相似文献

1
Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries.
Nanoscale. 2015 Dec 28;7(48):20614-24. doi: 10.1039/c5nr07486j. Epub 2015 Nov 23.
3
Combination of lightweight elements and nanostructured materials for batteries.
Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g.
4
Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries.
Angew Chem Int Ed Engl. 2014 Jan 7;53(2):442-6. doi: 10.1002/anie.201307976. Epub 2013 Nov 20.
6
Challenges and prospects of lithium-sulfur batteries.
Acc Chem Res. 2013 May 21;46(5):1125-34. doi: 10.1021/ar300179v. Epub 2012 Oct 25.
7
Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
Nanoscale. 2015 Sep 28;7(36):14881-8. doi: 10.1039/c5nr02983j. Epub 2015 Aug 20.
8
Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.
ChemSusChem. 2015 Apr 24;8(8):1429-34. doi: 10.1002/cssc.201403371. Epub 2015 Mar 25.
9
Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.
ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23182-9. doi: 10.1021/acsami.5b07003. Epub 2015 Oct 7.
10
Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4338-43. doi: 10.1002/anie.201411626. Epub 2015 Feb 11.

引用本文的文献

1
Buckling Structured Stretchable Pseudocapacitor Yarn.
Sci Rep. 2017 Sep 20;7(1):12005. doi: 10.1038/s41598-017-12375-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验