Suppr超能文献

脑网络架构的发展

The development of brain network architecture.

作者信息

Wierenga Lara M, van den Heuvel Martijn P, van Dijk Sarai, Rijks Yvonne, de Reus Marcel A, Durston Sarah

机构信息

NICHE Laboratory, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.

Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.

出版信息

Hum Brain Mapp. 2016 Feb;37(2):717-29. doi: 10.1002/hbm.23062. Epub 2015 Nov 23.

Abstract

Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

摘要

脑连接在整个儿童期和青少年期呈现出长期的发展过程,因此,在此期间脑网络的拓扑结构会发生变化。这些随发育而变化的复杂性通过成熟过程中的区域差异得以体现。本研究探讨了儿童期和青少年期网络拓扑结构与区域发育模式的年龄相关变化。我们获取了两组扩散加权成像扫描和解剖学T1加权扫描数据。第一个数据集包括85名发育正常的个体(53名男性;32名女性),年龄在7至23岁之间,数据是在飞利浦Achieva 1.5特斯拉扫描仪上采集的。第二个数据集(N = 38)是在另一台(但相同的)1.5T扫描仪上采集的,用于对我们的结果进行独立验证。我们使用纤维束成像重建了全脑网络。我们将纤维束发育定义为平均扩散率和径向扩散率随年龄的变化。在整个儿童期和青少年期,大多数纤维的平均扩散率和径向扩散率值都有成熟变化,这可能反映了白质完整性的增加。在额叶和顶叶内及之间的联合纤维中观察到最大的年龄相关变化。此外,平均路径长度同时出现与年龄相关的下降(P < 0.0001)、节点强度增加(P < 0.0001)以及网络聚类增加(P = 0.001),这可能反映了拓扑组织的微调。这些结果提示了一种顺序成熟模型,即单峰区域之间的连接在儿童期增强,随后是从这些单峰区域到联合区域的连接增强,而青少年期的特征是额叶和顶叶皮质内联合区域之间的连接增强。《人类大脑图谱》37:717 - 729,2016年。© 2015威利期刊公司。

相似文献

1
The development of brain network architecture.
Hum Brain Mapp. 2016 Feb;37(2):717-29. doi: 10.1002/hbm.23062. Epub 2015 Nov 23.
2
Development of short-range white matter in healthy children and adolescents.
Hum Brain Mapp. 2018 Jan;39(1):204-217. doi: 10.1002/hbm.23836. Epub 2017 Oct 14.
3
A multisample study of longitudinal changes in brain network architecture in 4-13-year-old children.
Hum Brain Mapp. 2018 Jan;39(1):157-170. doi: 10.1002/hbm.23833. Epub 2017 Sep 28.
5
Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.
J Neurosci. 2015 Jun 17;35(24):9078-87. doi: 10.1523/JNEUROSCI.5043-14.2015.
7
Patterns of brain structural connectivity differentiate normal weight from overweight subjects.
Neuroimage Clin. 2015 Jan 13;7:506-17. doi: 10.1016/j.nicl.2015.01.005. eCollection 2015.
8
Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study.
Hum Brain Mapp. 2017 Feb;38(2):855-868. doi: 10.1002/hbm.23423. Epub 2016 Oct 24.
9
White matter development during adolescence as shown by diffusion MRI.
Brain Cogn. 2010 Feb;72(1):16-25. doi: 10.1016/j.bandc.2009.06.005. Epub 2009 Jul 22.
10
Abnormal brain white matter network in young smokers: a graph theory analysis study.
Brain Imaging Behav. 2018 Apr;12(2):345-356. doi: 10.1007/s11682-017-9699-6.

引用本文的文献

1
The clinical relevance of healthy neurodevelopmental connectivity in childhood and adolescence: a meta-analysis of resting-state fMRI.
Front Neurosci. 2025 Jun 26;19:1576932. doi: 10.3389/fnins.2025.1576932. eCollection 2025.
4
Normative mammillary body volumes: From the neonatal period to young adult.
Neuroimage Rep. 2022 Dec;2(4):None. doi: 10.1016/j.ynirp.2022.100122.
5
Structural brain network lateralization across childhood and adolescence.
Hum Brain Mapp. 2023 Mar;44(4):1711-1724. doi: 10.1002/hbm.26169. Epub 2022 Dec 7.
6
Signed graph representation learning for functional-to-structural brain network mapping.
Med Image Anal. 2023 Jan;83:102674. doi: 10.1016/j.media.2022.102674. Epub 2022 Nov 17.
7
Trajectory of rich club properties in structural brain networks.
Hum Brain Mapp. 2022 Oct 1;43(14):4239-4253. doi: 10.1002/hbm.25950. Epub 2022 May 27.
8
Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging.
PLoS Biol. 2022 Apr 29;20(4):e3001627. doi: 10.1371/journal.pbio.3001627. eCollection 2022 Apr.
9
Shift Toward Randomness in Brain Networks of Patients With Anorexia Nervosa: The Role of Malnutrition.
Front Neurosci. 2021 Mar 24;15:645139. doi: 10.3389/fnins.2021.645139. eCollection 2021.

本文引用的文献

1
The Neonatal Connectome During Preterm Brain Development.
Cereb Cortex. 2015 Sep;25(9):3000-13. doi: 10.1093/cercor/bhu095. Epub 2014 May 15.
2
Rich-club organization of the newborn human brain.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7456-61. doi: 10.1073/pnas.1324118111. Epub 2014 May 5.
3
The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.
Neuroscience. 2014 Sep 12;276:48-71. doi: 10.1016/j.neuroscience.2013.12.044. Epub 2013 Dec 28.
4
A meta-analysis of sex differences in human brain structure.
Neurosci Biobehav Rev. 2014 Feb;39(100):34-50. doi: 10.1016/j.neubiorev.2013.12.004. Epub 2013 Dec 26.
5
Unique developmental trajectories of cortical thickness and surface area.
Neuroimage. 2014 Feb 15;87:120-6. doi: 10.1016/j.neuroimage.2013.11.010. Epub 2013 Nov 15.
6
Graph theoretical analysis of developmental patterns of the white matter network.
Front Hum Neurosci. 2013 Nov 1;7:716. doi: 10.3389/fnhum.2013.00716. eCollection 2013.
7
Estimating false positives and negatives in brain networks.
Neuroimage. 2013 Apr 15;70:402-9. doi: 10.1016/j.neuroimage.2012.12.066. Epub 2013 Jan 5.
8
Diffusion tensor imaging of normal brain development.
Pediatr Radiol. 2013 Jan;43(1):15-27. doi: 10.1007/s00247-012-2496-x. Epub 2013 Jan 4.
9
Development of brain structural connectivity between ages 12 and 30: a 4-Tesla diffusion imaging study in 439 adolescents and adults.
Neuroimage. 2013 Jan 1;64:671-84. doi: 10.1016/j.neuroimage.2012.09.004. Epub 2012 Sep 14.
10
Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
Neuroimage. 2012 Feb 1;59(3):2142-54. doi: 10.1016/j.neuroimage.2011.10.018. Epub 2011 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验