Suppr超能文献

一种艾滋病病毒与丙型肝炎病毒共同流行模型的数学分析

Mathematical analysis of a model for AVL-HIV co-endemicity.

作者信息

Hussaini N, Lubuma J M-S, Barley K, Gumel A B

机构信息

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa; Department of Mathematical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria.

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.

出版信息

Math Biosci. 2016 Jan;271:80-95. doi: 10.1016/j.mbs.2015.10.008. Epub 2015 Oct 24.

Abstract

A model for the transmission dynamics of Anthroponotic Visceral Leishmaniasis (AVL) and human immunodeficiency virus (HIV) in a population is developed and used to assess the impact of the spread of each disease on the overall transmission dynamics. As for other vector-borne disease models, the AVL component of the model undergoes backward bifurcation when the associated reproduction number of the AVL-only sub-model (denoted by RL) is less than unity. Uncertainty and sensitivity analyzes of the model, using data relevant to the dynamics of the two diseases in Ethiopia, show that the top three parameters that drive the AVL infection (with respect to the associated response function, RL) are the average number of times a sandfly bites humans per unit time (σV), carrying capacity of vectors (KV) and transmission probability from infected humans to susceptible sandflies (β2). The distribution of RL is RL∈[0.06,3.94] with a mean of RL=1.08. Furthermore, the top three parameters that affect HIV dynamics (with respect to the response function RH) are the transmission rate of HIV (βH), HIV-induced death rate (δH), and the modification parameter for the increase in infectiousness of AIDS individuals in comparison to HIV infected without clinical symptoms of AIDS (ωH). The distribution of RH is RH∈[0.88,2.79] with a mean of RH=1.46. The dominant parameters that affect the dynamics of the full VL-HIV model (with respect to the associated reproduction number, RLH, as the response function) are the transmission rate of HIV (βH), the average number of times a sandfly bites humans per unit time (σV), and HIV-induced death rate (δH) (the distribution of RLH is RLH∈[0.88,3.94] with a mean of RLH=1.64). Numerical simulations of the model show that the two diseases co-exist (with AVL dominating, but not driving HIV to extinction) whenever the reproduction number of each disease exceeds unity. It is shown that AVL can invade a population at HIV-endemic state if a certain threshold quantity, known as invasion reproduction number, exceeds unity.

摘要

建立了一个关于人群中人间内脏利什曼病(AVL)和人类免疫缺陷病毒(HIV)传播动力学的模型,并用于评估每种疾病传播对整体传播动力学的影响。与其他媒介传播疾病模型一样,当仅AVL子模型的相关繁殖数(用RL表示)小于1时,模型的AVL部分会出现反向分岔。利用与埃塞俄比亚这两种疾病动力学相关的数据对模型进行不确定性和敏感性分析,结果表明,驱动AVL感染的前三个参数(相对于相关响应函数RL)是每单位时间白蛉叮咬人类的平均次数(σV)、媒介的承载能力(KV)以及从受感染人类传播到易感白蛉的概率(β2)。RL的分布为RL∈[0.06,3.94],均值为RL = 1.08。此外,影响HIV动力学的前三个参数(相对于响应函数RH)是HIV的传播率(βH)、HIV诱导的死亡率(δH)以及与无艾滋病临床症状的HIV感染者相比,艾滋病个体传染性增加的修正参数(ωH)。RH的分布为RH∈[0.88,2.79],均值为RH = 1.46。影响完整的VL - HIV模型动力学的主要参数(相对于相关繁殖数RLH作为响应函数)是HIV的传播率(βH)、每单位时间白蛉叮咬人类的平均次数(σV)以及HIV诱导的死亡率(δH)(RLH的分布为RLH∈[0.88,3.94],均值为RLH = 1.64)。模型的数值模拟表明,只要每种疾病的繁殖数超过1,这两种疾病就会共存(AVL占主导,但不会使HIV灭绝)。结果表明,如果某个阈值量(称为入侵繁殖数)超过1,AVL可以在HIV流行状态下侵入人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验