Suppr超能文献

用于预测革兰氏阴性菌血症死亡率的基于树的模型:避免本末倒置。

Tree-Based Models for Predicting Mortality in Gram-Negative Bacteremia: Avoid Putting the CART before the Horse.

作者信息

Rhodes Nathaniel J, O'Donnell J Nicholas, Lizza Bryan D, McLaughlin Milena M, Esterly John S, Scheetz Marc H

机构信息

Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA.

Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA.

出版信息

Antimicrob Agents Chemother. 2015 Nov 23;60(2):838-44. doi: 10.1128/AAC.01564-15. Print 2016 Feb.

Abstract

Increasingly, infectious disease studies employ tree-based approaches, e.g., classification and regression tree modeling, to identify clinical thresholds. We present tree-based-model-derived thresholds along with their measures of uncertainty. We explored individual and pooled clinical cohorts of bacteremic patients to identify modified acute physiology and chronic health evaluation (II) (m-APACHE-II) score mortality thresholds using a tree-based approach. Predictive performance measures for each candidate threshold were calculated. Candidate thresholds were examined according to binary logistic regression probabilities of the primary outcome, correct classification predictive matrices, and receiver operating characteristic curves. Three individual cohorts comprising a total of 235 patients were studied. Within the pooled cohort, the mean (± standard deviation) m-APACHE-II score was 13.6 ± 5.3, with an in-hospital mortality of 16.6%. The probability of death was greater at higher m-APACHE II scores in only one of three cohorts (odds ratio for cohort 1 [OR1] = 1.15, 95% confidence interval [CI] = 0.99 to 1.34; OR2 = 1.04, 95% CI = 0.94 to 1.16; OR3 = 1.18, 95% CI = 1.02 to 1.38) and was greater at higher scores within the pooled cohort (OR4 = 1.11, 95% CI = 1.04 to 1.19). In contrast, tree-based models overcame power constraints and identified m-APACHE-II thresholds for mortality in two of three cohorts (P = 0.02, 0.1, and 0.008) and the pooled cohort (P = 0.001). Predictive performance at each threshold was highly variable among cohorts. The selection of any one predictive threshold value resulted in fixed sensitivity and specificity. Tree-based models increased power and identified threshold values from continuous predictor variables; however, sample size and data distributions influenced the identified thresholds. The provision of predictive matrices or graphical displays of predicted probabilities within infectious disease studies can improve the interpretation of tree-based model-derived thresholds.

摘要

传染病研究越来越多地采用基于树的方法,例如分类和回归树建模,来确定临床阈值。我们提出了基于树模型得出的阈值及其不确定性度量。我们探索了菌血症患者的个体和汇总临床队列,以使用基于树的方法确定改良急性生理学与慢性健康状况评估(II)(m-APACHE-II)评分的死亡率阈值。计算了每个候选阈值的预测性能指标。根据主要结局的二元逻辑回归概率、正确分类预测矩阵和受试者工作特征曲线对候选阈值进行了检验。研究了三个个体队列,共235名患者。在汇总队列中,m-APACHE-II评分的平均值(±标准差)为13.6±5.3,住院死亡率为16.6%。仅在三个队列中的一个队列中,m-APACHE II评分越高,死亡概率越高(队列1的优势比[OR1]=1.15,95%置信区间[CI]=0.99至1.34;OR2=1.04,95%CI=0.94至1.16;OR3=1.18,95%CI=1.02至1.38),而在汇总队列中,评分越高死亡概率越高(OR4=1.11,95%CI=1.04至1.19)。相比之下,基于树的模型克服了效能限制,在三个队列中的两个队列(P=0.02、0.1和0.008)以及汇总队列(P=0.001)中确定了m-APACHE-II死亡率阈值。各队列中每个阈值的预测性能差异很大。选择任何一个预测阈值都会导致固定的敏感性和特异性。基于树的模型提高了效能,并从连续预测变量中确定了阈值;然而,样本量和数据分布会影响所确定的阈值。在传染病研究中提供预测矩阵或预测概率的图形显示可以改善对基于树模型得出的阈值的解释。

相似文献

1
Tree-Based Models for Predicting Mortality in Gram-Negative Bacteremia: Avoid Putting the CART before the Horse.
Antimicrob Agents Chemother. 2015 Nov 23;60(2):838-44. doi: 10.1128/AAC.01564-15. Print 2016 Feb.
3
4
Evaluation of clinical outcomes in patients with Gram-negative bloodstream infections according to cefepime MIC.
Diagn Microbiol Infect Dis. 2015 Jun;82(2):165-71. doi: 10.1016/j.diagmicrobio.2015.03.005. Epub 2015 Mar 10.
5
[Clinical features and prognosis analysis of the elderly and youth patients with acute severe poisoning].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018 Aug;30(8):790-794. doi: 10.3760/cma.j.issn.2095-4352.2018.08.015.
6
[The value of determination of serum cholinesterase levels in judgment of severity and prognosis in patients with severe pneumonia].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2016 Jan;28(1):38-43. doi: 10.3760/cma.j.issn.2095-4352.2016.01.008.
10
[Formulation of combined predictive indicators using logistic regression model in predicting sepsis and prognosis].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017 Feb;29(2):139-144. doi: 10.3760/cma.j.issn.2095-4352.2017.02.009.

引用本文的文献

1
Integrating ensemble and machine learning models for early prediction of pneumonia mortality using laboratory tests.
Heliyon. 2024 Jul 14;10(14):e34525. doi: 10.1016/j.heliyon.2024.e34525. eCollection 2024 Jul 30.
2
Multistate modeling for survival analysis in critically ill patients treated with meropenem.
CPT Pharmacometrics Syst Pharmacol. 2024 Feb;13(2):222-233. doi: 10.1002/psp4.13072. Epub 2023 Nov 7.
3
Subtyping intractable functional constipation in children using clinical and laboratory data in a classification model.
Front Pediatr. 2023 Apr 24;11:1148753. doi: 10.3389/fped.2023.1148753. eCollection 2023.
6
Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury.
Antimicrob Agents Chemother. 2019 Jun 24;63(7). doi: 10.1128/AAC.00079-19. Print 2019 Jul.
7
Optimal duration for continuation of statin therapy in bacteremic patients.
Ther Adv Infect Dis. 2018 May 17;5(5):83-90. doi: 10.1177/2049936118775926. eCollection 2018 Sep.
8
Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin.
Antimicrob Agents Chemother. 2017 Dec 21;62(1). doi: 10.1128/AAC.01684-17. Print 2018 Jan.
9
The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections.
Intensive Care Med. 2017 Jul;43(7):1021-1032. doi: 10.1007/s00134-017-4780-6. Epub 2017 Apr 13.
10
Daptomycin non-susceptible Enterococcus faecium in leukemia patients: Role of prior daptomycin exposure.
J Infect. 2017 Mar;74(3):243-247. doi: 10.1016/j.jinf.2016.11.004. Epub 2016 Nov 11.

本文引用的文献

1
Impact of body mass index on clinical outcomes in patients with gram-negative bacteria bloodstream infections.
J Infect Chemother. 2016 Oct;22(10):671-6. doi: 10.1016/j.jiac.2016.07.006. Epub 2016 Aug 31.
2
Evaluation of clinical outcomes in patients with Gram-negative bloodstream infections according to cefepime MIC.
Diagn Microbiol Infect Dis. 2015 Jun;82(2):165-71. doi: 10.1016/j.diagmicrobio.2015.03.005. Epub 2015 Mar 10.
5
Machine learning methods without tears: a primer for ecologists.
Q Rev Biol. 2008 Jun;83(2):171-93. doi: 10.1086/587826.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验